// Copyright (C) Stichting Deltares 2018. All rights reserved. // // This file is part of the Dam Engine. // // The Dam Engine is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . // // All names, logos, and references to "Deltares" are registered trademarks of // Stichting Deltares and remain full property of Stichting Deltares at all times. // All rights reserved. using System; using System.Collections.Generic; using System.Linq; using System.Text; using Deltares.DamEngine.Calculators.KernelWrappers.Common; using Deltares.DamEngine.Calculators.KernelWrappers.Interfaces; using Deltares.DamEngine.Calculators.Properties; using Deltares.DamEngine.Data.Design; using Deltares.DamEngine.Data.General.Results; using Deltares.DamEngine.Data.Geometry; using Deltares.DamEngine.Data.Geotechnics; using Deltares.DamEngine.Data.Standard.Logging; namespace Deltares.DamEngine.Calculators.DikesDesign { /// /// The Dam Engine design calculator /// public class DesignCalculatorShoulderPerPoint { private const double minimumShoulderElevation = 0.5; private const double minimumShoulderLength = 2; private const double toleranceShoulderChanges = 0.001; /// /// Performs the design calculation shoulder iterative per point. /// This is a design strategy used for Piping /// /// The kernel wrapper. /// The kernel data input. /// The kernel data output. /// The dam kernel input. /// The design scenario. /// The calculation messages. /// The design calculations. /// public static void PerformDesignCalculationShoulderPerPoint (IKernelWrapper kernelWrapper, IKernelDataInput kernelDataInput, IKernelDataOutput kernelDataOutput, DamKernelInput damKernelInput, DesignScenario designScenario, List calculationMessages, List designCalculations) { var designResults = new List(); var location = damKernelInput.Location; var subSoilScenario = damKernelInput.SubSoilScenario; var surfaceLine = designScenario.GetMostRecentSurfaceLine(subSoilScenario.SoilProfile1D, subSoilScenario.StiFileName); try { List locationCalculationMessages; double orgShoulderLength = surfaceLine.DetermineShoulderLength(); double orgShoulderHeight = surfaceLine.DetermineShoulderHeight(); GeometryPoint startSurfacePoint = surfaceLine.GetDikeToeInward(); IEnumerable relevantSurfacePointsList = from GeometryPoint point in surfaceLine.Geometry.Points where point.X >= startSurfacePoint.X orderby point.X ascending select point; relevantSurfacePointsList = GetDiscretizedSurfaceLine(relevantSurfacePointsList); double desiredShoulderLength = orgShoulderLength; double oldDesiredShoulderLength = orgShoulderLength; double desiredShoulderHeight = orgShoulderHeight; double oldDesiredShoulderHeight = orgShoulderHeight; foreach (var point in relevantSurfacePointsList) { // Calculate the piping design at the given point. This returns the required adaption (berm length and height) if any. ShoulderDesign shoulderDesign = kernelWrapper.CalculateDesignAtPoint(damKernelInput, kernelDataInput, kernelDataOutput, point, out locationCalculationMessages); if (shoulderDesign != null) { // Piping is an issue so adapt the surfaceline for it desiredShoulderLength = shoulderDesign.ShoulderLengthFromToe; desiredShoulderLength = Math.Max(desiredShoulderLength, oldDesiredShoulderLength); oldDesiredShoulderLength = desiredShoulderLength; // shoulder height is height above surfacelevel!! desiredShoulderHeight = shoulderDesign.ShoulderHeightFromToe; desiredShoulderHeight = Math.Max(desiredShoulderHeight, oldDesiredShoulderHeight); oldDesiredShoulderHeight = desiredShoulderHeight; } } if (desiredShoulderLength > 0) { desiredShoulderLength = Math.Max(desiredShoulderLength, minimumShoulderLength); } if (desiredShoulderHeight > 0) { desiredShoulderHeight = Math.Max(desiredShoulderHeight, minimumShoulderElevation); } bool isNewShoulderSameAsOriginal = ((Math.Abs(desiredShoulderLength - orgShoulderLength) < toleranceShoulderChanges) && (Math.Abs(desiredShoulderHeight - orgShoulderHeight) < toleranceShoulderChanges)); SurfaceLine2 newSurfaceLine; if (isNewShoulderSameAsOriginal) { newSurfaceLine = surfaceLine; } else { // Adapt the surfaceline for the finally required shoulder dimensions. double maxShoulderLevel = CalculateMaximumShoulderLevel(surfaceLine, 1.0); // no limit to height of shoulder var surfaceLineShoulderAdapter = new SurfaceLineShoulderAdapter(surfaceLine, location); surfaceLineShoulderAdapter.MaxShoulderLevel = maxShoulderLevel; newSurfaceLine = surfaceLineShoulderAdapter.ConstructNewSurfaceLine(desiredShoulderLength, desiredShoulderHeight, true); } damKernelInput.Location.SurfaceLine = newSurfaceLine; kernelWrapper.Prepare(damKernelInput, 0, out kernelDataInput, out kernelDataOutput); kernelWrapper.Execute(kernelDataInput, kernelDataOutput, out locationCalculationMessages); // Process output calculationMessages.AddRange(locationCalculationMessages); StringBuilder sb = new StringBuilder(); foreach (var message in locationCalculationMessages) { sb.Append(message.Message + Environment.NewLine); } string resultMessage = sb.ToString(); kernelWrapper.PostProcess(damKernelInput, kernelDataOutput, designScenario, resultMessage, out designResults); string evaluationMessage; DesignAdvise designAdvise; bool designSuccessful = kernelWrapper.EvaluateDesign(damKernelInput, kernelDataInput, kernelDataOutput, out designAdvise, out evaluationMessage); if (!designSuccessful) { throw new DesignCalculatorException(Resources.DesignUnsuccessful + " " + evaluationMessage); } } catch (Exception exception) { string resultMessage = exception.Message; kernelWrapper.PostProcess(damKernelInput, kernelDataOutput, designScenario, resultMessage, out designResults); ChangeSafetyFactor(designResults, -1); throw new DesignCalculatorException(Resources.DesignUnsuccessful + " " + resultMessage); } finally { foreach (var designResult in designResults) { designCalculations.Add(designResult); } } } private static void ChangeSafetyFactor(List designResults, double safetyFactor) { designResults[0].SafetyFactor = 1; foreach (var designResult in designResults) { var factor = designResult.SafetyFactor; factor = safetyFactor; designResult.SafetyFactor = factor; } } /// /// Calculates the maximum level for the shoulder. /// /// The surface line. /// The fraction of dike height to determine maximimum shoulder height. /// private static double CalculateMaximumShoulderLevel(SurfaceLine2 surfaceLine, double maxFractionOfDikeHeightForShoulderHeight) { var top = surfaceLine.CharacteristicPoints.GetGeometryPoint(CharacteristicPointType.DikeTopAtPolder).Z; var bottom = surfaceLine.CharacteristicPoints.GetGeometryPoint(CharacteristicPointType.DikeToeAtPolder).Z; if (top - bottom <= 0) { throw new DesignCalculatorException(Resources.SurfaceLineShoulderAdapterMaxShoulderHeightError); } double maxHeight = Math.Abs((top - bottom) * maxFractionOfDikeHeightForShoulderHeight); return bottom + maxHeight; } /// /// Ensures that the points on the surface line are never more than cDiff (0.5) apart. /// /// /// private static IEnumerable GetDiscretizedSurfaceLine(IEnumerable originalLine) { const double cDiff = 0.5; var newLine = new List(); double currentX = originalLine.First().X; foreach (var point in originalLine) { while (point.X > currentX + cDiff) { var newPoint = new GeometryPoint(point) { X = currentX + cDiff }; if (newPoint.X > newLine.Last().X) { newPoint.Z = newLine.Last().Z + ((newPoint.X - newLine.Last().X) / (point.X - newLine.Last().X)) * (point.Z - newLine.Last().Z); newLine.Add(newPoint); } currentX = newPoint.X; } newLine.Add(point); } return newLine; } } }