// Copyright (C) Stichting Deltares 2016. All rights reserved. // // This file is part of Ringtoets. // // Ringtoets is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // All names, logos, and references to "Deltares" are registered trademarks of // Stichting Deltares and remain full property of Stichting Deltares at all times. // All rights reserved. using System; using Core.Common.Base.Data; using Ringtoets.HydraRing.Data; using Ringtoets.Piping.Data.Probabilistics; using Ringtoets.Piping.InputParameterCalculation; using Ringtoets.Piping.Primitives; namespace Ringtoets.Piping.Data { /// /// Class responsible for calculating the derived piping input. /// public class DerivedPipingInput { private const double seepageLengthStandardDeviationFraction = 0.1; private readonly PipingInput input; /// /// Creates a new instance of . /// /// The input to calculate the derived piping input. /// Thrown when is null. public DerivedPipingInput(PipingInput input) { if (input == null) { throw new ArgumentNullException("input", "Cannot create DerivedPipingInput without PipingInput."); } this.input = input; } /// /// Gets the assessment level from the . /// public RoundedDouble AssessmentLevel { get { return input.HydraulicBoundaryLocation == null ? new RoundedDouble(2, double.NaN) : new RoundedDouble(2, input.HydraulicBoundaryLocation.DesignWaterLevel); } } /// /// Gets the piezometric head exit. /// public RoundedDouble PiezometricHeadExit { get { var dampingFactorExit = PipingSemiProbabilisticDesignValueFactory.GetDampingFactorExit(input).GetDesignValue(); var phreaticLevelExit = PipingSemiProbabilisticDesignValueFactory.GetPhreaticLevelExit(input).GetDesignValue(); return new RoundedDouble(2, InputParameterCalculationService.CalculatePiezometricHeadAtExit(AssessmentLevel, dampingFactorExit, phreaticLevelExit)); } } /// /// Gets the seepage length. /// public LognormalDistribution SeepageLength { get { LognormalDistribution seepageLength = new LognormalDistribution(2); double seepageLengthMean = input.ExitPointL - input.EntryPointL; if (seepageLengthMean > 0) { seepageLength.Mean = (RoundedDouble)seepageLengthMean; seepageLength.StandardDeviation = (RoundedDouble)seepageLengthMean * seepageLengthStandardDeviationFraction; } else { seepageLength.Mean = (RoundedDouble) double.NaN; seepageLength.StandardDeviation = (RoundedDouble) double.NaN; } return seepageLength; } } /// /// Gets the thickness coverage layer. /// public LognormalDistribution ThicknessCoverageLayer { get { LognormalDistribution thicknessCoverageLayer = new LognormalDistribution(2) { StandardDeviation = (RoundedDouble) 0.5 }; if (input.SurfaceLine != null && input.SoilProfile != null & !double.IsNaN(input.ExitPointL)) { TrySetThicknessCoverageLayer(thicknessCoverageLayer); } else { thicknessCoverageLayer.Mean = (RoundedDouble) double.NaN; } return thicknessCoverageLayer; } } /// /// gets the thickness aquifer layer. /// public LognormalDistribution ThicknessAquiferLayer { get { LognormalDistribution thicknessAquiferLayer = new LognormalDistribution(2) { StandardDeviation = (RoundedDouble) 0.5 }; PipingSoilProfile soilProfile = input.SoilProfile; RingtoetsPipingSurfaceLine surfaceLine = input.SurfaceLine; double exitPointL = input.ExitPointL; if (soilProfile != null && surfaceLine != null && !double.IsNaN(exitPointL)) { double thicknessTopAquiferLayer = GetThicknessTopAquiferLayer(soilProfile, surfaceLine, exitPointL); TrySetThicknessAquiferLayerMean(thicknessAquiferLayer, thicknessTopAquiferLayer); } else { thicknessAquiferLayer.Mean = (RoundedDouble)double.NaN; } return thicknessAquiferLayer; } } private static void TrySetThicknessAquiferLayerMean(LognormalDistribution thicknessAquiferLayer, double thicknessTopAquiferLayer) { if(thicknessTopAquiferLayer > 0) { thicknessAquiferLayer.Mean = (RoundedDouble)thicknessTopAquiferLayer; } else { thicknessAquiferLayer.Mean = (RoundedDouble)double.NaN; } } private static double GetThicknessTopAquiferLayer(PipingSoilProfile soilProfile, RingtoetsPipingSurfaceLine surfaceLine, double exitPointL) { try { var zAtL = surfaceLine.GetZAtL(exitPointL); return soilProfile.GetTopAquiferLayerThicknessBelowLevel(zAtL); } catch (ArgumentOutOfRangeException) { return double.NaN; } catch (ArgumentException) { return double.NaN; } } private void TrySetThicknessCoverageLayer(LognormalDistribution thicknessCoverageLayer) { try { thicknessCoverageLayer.Mean = (RoundedDouble)InputParameterCalculationService.CalculateThicknessCoverageLayer(input.WaterVolumetricWeight, PipingSemiProbabilisticDesignValueFactory.GetPhreaticLevelExit(input).GetDesignValue(), input.ExitPointL, input.SurfaceLine, input.SoilProfile); } catch (ArgumentOutOfRangeException) { thicknessCoverageLayer.Mean = (RoundedDouble)double.NaN; } } } }