// Copyright (C) Stichting Deltares 2019. All rights reserved.
//
// This file is part of the Dam Engine.
//
// The Dam Engine is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see .
//
// All names, logos, and references to "Deltares" are registered trademarks of
// Stichting Deltares and remain full property of Stichting Deltares at all times.
// All rights reserved.
using System;
using System.Collections.Generic;
using System.Data;
using System.IO;
using System.Linq;
using Deltares.DamEngine.Calculators.DikesDesign;
using Deltares.DamEngine.Calculators.KernelWrappers.Common;
using Deltares.DamEngine.Calculators.KernelWrappers.Interfaces;
using Deltares.DamEngine.Calculators.KernelWrappers.MacroStabilityCommon;
using Deltares.DamEngine.Calculators.KernelWrappers.MacroStabilityCommon.MacroStabilityIo;
using Deltares.DamEngine.Calculators.Properties;
using Deltares.DamEngine.Data.Design;
using Deltares.DamEngine.Data.General;
using Deltares.DamEngine.Data.General.Results;
using Deltares.DamEngine.Data.Geotechnics;
using Deltares.DamEngine.Data.Standard;
using Deltares.DamEngine.Data.Standard.Calculation;
using Deltares.MacroStability.CSharpWrapper;
using Deltares.MacroStability.CSharpWrapper.Input;
using Deltares.MacroStability.CSharpWrapper.Output;
using Deltares.Geo.Common.Standard;
using CharacteristicPointType = Deltares.DamEngine.Data.Geotechnics.CharacteristicPointType;
using GeometryPoint = Deltares.DamEngine.Data.Geometry.GeometryPoint;
using LogMessage = Deltares.DamEngine.Data.Standard.Logging.LogMessage;
using LogMessageType = Deltares.DamEngine.Data.Standard.Logging.LogMessageType;
using Soil = Deltares.DamEngine.Data.Geotechnics.Soil;
using SoilProfile = Deltares.DamEngine.Data.Geotechnics.SoilProfile;
using UpliftVanCalculationGrid = Deltares.DamEngine.Calculators.KernelWrappers.MacroStabilityCommon.UpliftVanCalculationGrid;
namespace Deltares.DamEngine.Calculators.KernelWrappers.MacroStabilityInwards
{
public class MacroStabilityInwardsKernelWrapper : IKernelWrapper
{
private Calculator stabilityCalculator;
private int lastIterationIndex;
///
/// Gets or sets the failure mechanisme paramaters for mstab.
///
///
/// The failure mechanisme paramaters mstab.
///
public FailureMechanismParametersMStab FailureMechanismParametersMStab { get; set; } //ToDo MWDAM-? Use same as for DGeoStability or create new one?
///
/// Prepares the specified dam kernel input.
///
/// The dam kernel input.
/// The number of the current iteration.
/// The kernel data input.
/// The kernel data output
///
/// Result of the prepare
///
public PrepareResult Prepare(DamKernelInput damKernelInput, int iterationIndex, out IKernelDataInput kernelDataInput, out IKernelDataOutput kernelDataOutput)
{
var macroStabilityInput = new MacroStabilityKernelDataInput();
kernelDataInput = macroStabilityInput;
var macroStabilityOutput = new MacroStabilityOutput
{
CalculationResult = CalculationResult.NoRun
};
kernelDataOutput = macroStabilityOutput;
if (damKernelInput.SubSoilScenario.SegmentFailureMechanismType.Value == SegmentFailureMechanismType.Stability)
{
try
{
EnsureSoilProfile2DIsFilled(damKernelInput.SubSoilScenario, damKernelInput.Location.SurfaceLine, damKernelInput.Location.GetDikeEmbankmentSoil());
// Determine whether there is uplift
UpliftSituation upliftSituation;
const bool useRivelLevelLow = false;
var plLines = UpliftHelper.DeterminePlLinesForStability(damKernelInput, useRivelLevelLow, out upliftSituation);
upliftSituation.IsUplift = UpliftHelper.DetermineIsUplift(plLines, damKernelInput.Location, damKernelInput.SubSoilScenario);
macroStabilityOutput.UpliftSituation = upliftSituation;
if (upliftSituation.IsUplift)
{
var left = damKernelInput.Location.SurfaceLine.CharacteristicPoints.GetGeometryPoint(CharacteristicPointType.SurfaceLevelOutside).X;
var right = damKernelInput.Location.SurfaceLine.CharacteristicPoints.GetGeometryPoint(CharacteristicPointType.SurfaceLevelInside).X;
var penetrationLength = damKernelInput.Location.ModelParametersForPlLines.PenetrationLength;
var soilProfile1D = damKernelInput.SubSoilScenario.SoilProfile2D.GetSoilProfile1D(
damKernelInput.Location.SurfaceLine.CharacteristicPoints.GetGeometryPoint(CharacteristicPointType.DikeTopAtPolder).X);
var waterNet = PlLinesToWaternetConverter.ConvertPlLineToWaternet(plLines, soilProfile1D, penetrationLength, left, right);
// Define traffic load
TrafficLoad trafficLoad = null;
if (damKernelInput.Location.StabilityOptions != null && damKernelInput.Location.StabilityOptions.TrafficLoad.HasValue &&
!damKernelInput.Location.StabilityOptions.TrafficLoad.Value.AlmostZero())
{
trafficLoad = new TrafficLoad();
trafficLoad.Pressure = damKernelInput.Location.StabilityOptions.TrafficLoad.Value;
trafficLoad.XStart = damKernelInput.Location.SurfaceLine
.CharacteristicPoints.GetGeometryPoint(CharacteristicPointType.TrafficLoadInside).X;
trafficLoad.XEnd = damKernelInput.Location.SurfaceLine
.CharacteristicPoints.GetGeometryPoint(CharacteristicPointType.TrafficLoadOutside).X;
}
// Define slip circle UpliftVan
var slipCircleDefinition = damKernelInput.DamFailureMechanismeCalculationSpecification
.FailureMechanismParametersMStab.MStabParameters.SlipCircleDefinition;
double minimumCircleDepth = damKernelInput.DamFailureMechanismeCalculationSpecification
.FailureMechanismParametersMStab.MStabParameters.CalculationOptions.MinimalCircleDepth;
UpliftVanCalculationGrid upliftVanCalculationGrid = UpliftVanGridCreator.DetermineGridsFromSettings(
slipCircleDefinition, damKernelInput.Location.SurfaceLine);
double centerOfLeftGridXCoordinate =
(upliftVanCalculationGrid.LeftGridXLeft + upliftVanCalculationGrid.LeftGridXRight) * 0.5;
SoilProfile1D soilProfile1DAtCenterOfLeftGridXCoordinate =
damKernelInput.SubSoilScenario.DetermineSoilProfile1DAtX(centerOfLeftGridXCoordinate, damKernelInput.Location.SurfaceLine,
damKernelInput.Location.GetDikeEmbankmentSoil());
UpliftVanGridCreator.DetermineTangentLines(upliftVanCalculationGrid, slipCircleDefinition,
soilProfile1DAtCenterOfLeftGridXCoordinate, minimumCircleDepth);
FillMacroStabilityWrapperInputFromEngine fillMacroStabilityWrapperFromEngine = new FillMacroStabilityWrapperInputFromEngine()
{
TrafficLoad = trafficLoad,
UpliftVanCalculationGrid = upliftVanCalculationGrid
};
macroStabilityInput.Input = fillMacroStabilityWrapperFromEngine.CreateMacroStabilityInput(damKernelInput, FailureMechanismParametersMStab, waterNet);
return PrepareKernel(macroStabilityInput.Input);
}
return PrepareResult.NotRelevant;
}
catch
{
kernelDataOutput = macroStabilityOutput;
return PrepareResult.Failed;
}
}
kernelDataInput = null;
return PrepareResult.NotRelevant;
}
private void EnsureSoilProfile2DIsFilled(SoilGeometryProbability subSoilScenario, SurfaceLine2 surfaceLine2, Soil dikeEmbankmentSoil)
{
var soilProfile2D = subSoilScenario.SoilProfile2D;
if (soilProfile2D == null)
{
var soilSurfaceProfile = new SoilSurfaceProfile
{
SoilProfile = subSoilScenario.SoilProfile1D,
SurfaceLine2 = surfaceLine2,
Name = subSoilScenario.SoilProfile1D.Name,
DikeEmbankmentMaterial = dikeEmbankmentSoil
};
// Convert the soilsurfacesoilprofile to a SoilProfile2D to be able to edit it properly.
var soilProfile2DNew = soilSurfaceProfile.ConvertToSoilProfile2D();
subSoilScenario.SoilProfile2D = soilProfile2DNew;
subSoilScenario.SoilProfile2DName = soilProfile2DNew.Name;
subSoilScenario.SoilProfileType = SoilProfileType.ProfileType2D;
subSoilScenario.SoilProfile1D = null;
}
}
private PrepareResult PrepareKernel(MacroStability.CSharpWrapper.Input.MacroStabilityInput input)
{
try
{
stabilityCalculator = new Calculator(input);
// For now a simple check to see if any data has been past at all.
var inputAsXml = stabilityCalculator.KernelInputXml;
File.WriteAllText("TestfileFromPrepare.xml", inputAsXml);
if (inputAsXml.Length > 10)
{
return PrepareResult.Successful;
}
else
{
return PrepareResult.Failed;
}
}
catch
{
return PrepareResult.Failed;
}
}
///
/// Validates the specified kernel data input.
///
/// The kernel data input.
/// The kernel data output.
/// The return messages.
///
/// Zero when there are no errors, one when there are errors that prevent a calculation
///
public int Validate(IKernelDataInput kernelDataInput, IKernelDataOutput kernelDataOutput, out List messages)
{
MacroStabilityKernelDataInput macroStabilityKernelDataInput = (MacroStabilityKernelDataInput)kernelDataInput;
messages = new List();
try
{
var result = new MacroStability.CSharpWrapper.Validator(macroStabilityKernelDataInput.Input).Validate();
if (result.IsValid)
{
return 0;
}
(kernelDataOutput as MacroStabilityOutput).CalculationResult = CalculationResult.InvalidInputData;
foreach (var resultMessage in result.Messages)
{
var message = new LogMessage();
message.Message = resultMessage.Content;
switch (resultMessage.MessageType)
{
case MessageType.Error:
{
message.MessageType = LogMessageType.Error;
break;
}
case MessageType.Info:
{
message.MessageType = LogMessageType.Info;
break;
}
case MessageType.Warning:
{
message.MessageType = LogMessageType.Warning;
break;
}
};
messages.Add(message);
}
return 1;
}
catch (Exception e)
{
var message = new LogMessage {MessageType = LogMessageType.FatalError, Message = e.Message};
messages.Add(message);
(kernelDataOutput as MacroStabilityOutput).CalculationResult = CalculationResult.InvalidInputData;
return 1;
}
}
///
/// Executes the kernel.
///
/// The kernel data input.
/// The kernel data output.
/// The return messages.
public void Execute(IKernelDataInput kernelDataInput, IKernelDataOutput kernelDataOutput, out List messages)
{
MacroStabilityKernelDataInput macroStabilityKernelDataInput = (MacroStabilityKernelDataInput)kernelDataInput;
MacroStabilityOutput macroStabilityOutput = (MacroStabilityOutput)kernelDataOutput;
ThrowWhenMacroStabilityKernelInputNull(macroStabilityKernelDataInput);
ThrowWhenMacroStabilityKernelOutputNull(macroStabilityOutput);
messages = new List();
PerformStabilityCalculation(macroStabilityOutput, macroStabilityKernelDataInput, out messages);
kernelDataOutput = macroStabilityOutput;
}
private void PerformStabilityCalculation(MacroStabilityOutput macroStabilityOutput,
MacroStabilityKernelDataInput macroStabilityKernelDataInput, out List messages)
{
macroStabilityOutput.CalculationResult = CalculationResult.NoRun;
macroStabilityOutput.StabilityOutputItems = new List();
messages = new List();
try
{
var macroStabilityOutputKernel = stabilityCalculator.Calculate();
//ParseRunResult(macroStabilityOutputKernel, out var macroStabilityOutputItem, out messages);
FillEngineFromMacroStabilityWrapperOutput.FillEngineDataWithResults(macroStabilityOutputKernel, macroStabilityOutput,
out messages);
}
catch (Exception e)
{
macroStabilityOutput.CalculationResult = CalculationResult.UnexpectedError;
messages.Add(new LogMessage(LogMessageType.Error, null, e.Message));
}
}
///
/// Fills the design results with the kernel output.
///
/// The dam kernel input.
/// The kernel data output.
/// The design scenario.
/// The result message.
/// The design results.
///
public void PostProcess(DamKernelInput damKernelInput, IKernelDataOutput kernelDataOutput, DesignScenario designScenario,
string resultMessage, out List designResults)
{
ThrowWhenMacroStabilityDamKernelInputNull(damKernelInput);
MacroStabilityOutput macroStabilityOutput = kernelDataOutput as MacroStabilityOutput;
ThrowWhenMacroStabilityKernelOutputNull(macroStabilityOutput);
designResults = new List();
if (macroStabilityOutput.StabilityOutputItems.Count > 0)
{
var macroStabilityOutputItem = macroStabilityOutput.StabilityOutputItems[0];
if (macroStabilityOutputItem != null)
{
var designResult = NewDesignResult(damKernelInput, designScenario, macroStabilityOutputItem);
FillDesignResult(macroStabilityOutputItem, designResult);
designResult.StabilityDesignResults.NumberOfIterations = lastIterationIndex;
designResult.StabilityDesignResults.UpliftSituation = macroStabilityOutput.UpliftSituation;
designResults.Add(designResult);
}
}
}
private DesignResult NewDesignResult(DamKernelInput damKernelInput, DesignScenario designScenario,
MacroStabilityOutputItem macroStabilityOutputItem)
{
string soilProfile2DName = damKernelInput.SubSoilScenario.ToString();
var designResult = new DesignResult(damKernelInput.DamFailureMechanismeCalculationSpecification,
designScenario, damKernelInput.SubSoilScenario.SoilProfile1D, soilProfile2DName)
{
// initialize as failed
CalculationResult = CalculationResult.RunFailed
};
designResult.StabilityDesignResults = new StabilityDesignResults();
var stabilityDesignResults = new StabilityDesignResults();
stabilityDesignResults.RedesignedSurfaceLine = damKernelInput.Location.SurfaceLine;
designResult.ProfileName = soilProfile2DName;
designResult.StabilityDesignResults = stabilityDesignResults;
return designResult;
}
private static void FillDesignResult(MacroStabilityOutputItem macroStabilityOutputItem, DesignResult designResult)
{
designResult.CalculationResult = macroStabilityOutputItem.CalculationResult;
designResult.StabilityDesignResults.StabilityModelType = macroStabilityOutputItem.StabilityModelType;
if (designResult.CalculationResult == CalculationResult.Succeeded)
{
designResult.StabilityDesignResults.SafetyFactor = macroStabilityOutputItem.SafetyFactor;
}
}
///
/// Throws the when macro stability kernel input is not assigned.
///
/// The dam macro stability input.
///
public static void ThrowWhenMacroStabilityKernelInputNull(MacroStabilityKernelDataInput macroStabilityKernelDataInput)
{
if (macroStabilityKernelDataInput == null)
{
throw new NoNullAllowedException(Resources.MacroStabilityKernelWrapper_NoMacroStabilityInputObjectDefined);
}
}
///
/// Throws the when macro stability kernel output is not assigned.
///
/// The dam macro stability output.
///
public static void ThrowWhenMacroStabilityKernelOutputNull(MacroStabilityOutput macroStabilityOutput)
{
if (macroStabilityOutput == null)
{
throw new NoNullAllowedException(Resources.MacroStabilityKernelWrapper_NoMacroStabilityOutputObjectDefined);
}
}
///
/// Throws the when macro stability dam kernel input is not assigned.
///
/// The dam kernel input.
///
public static void ThrowWhenMacroStabilityDamKernelInputNull(DamKernelInput damKernelInput)
{
if (damKernelInput == null)
{
throw new NoNullAllowedException(Resources.MacroStabilityKernelWrapper_NoDamInputObjectDefinedForMacroStability);
}
}
///
/// Calculates the design at point.
///
/// The dam kernel input.
/// The kernel data input.
/// The kernel data output.
/// The point.
/// The messages.
///
///
public ShoulderDesign CalculateDesignAtPoint(DamKernelInput damKernelInput, IKernelDataInput kernelDataInput,
IKernelDataOutput kernelDataOutput, GeometryPoint point, out List messages)
{
// ToDo: Not clear yet if this must be done or how
throw new NotImplementedException();
}
///
/// Evaluates the design (current factor greater than desired factor)
///
/// The dam kernel input.
/// The kernel data input.
/// The kernel data output.
/// The design advise.
/// The evaluation message.
///
/// if the design was succesful
///
///
public bool EvaluateDesign(DamKernelInput damKernelInput, IKernelDataInput kernelDataInput, IKernelDataOutput kernelDataOutput,
out DesignAdvise designAdvise, out string evaluationMessage)
{
MacroStabilityKernelDataInput macroStabilityKernelDataInput = kernelDataInput as MacroStabilityKernelDataInput;
MacroStabilityOutput macroStabilityOutput = kernelDataOutput as MacroStabilityOutput;
ThrowWhenMacroStabilityKernelInputNull(macroStabilityKernelDataInput);
ThrowWhenMacroStabilityKernelOutputNull(macroStabilityOutput);
ThrowWhenMacroStabilityDamKernelInputNull(damKernelInput);
double fosRequired = damKernelInput.Location.ModelFactors.RequiredSafetyFactorStabilityInnerSlope;
double fosAchieved = macroStabilityOutput.StabilityOutputItems[0].SafetyFactor;
double exitPointXCoordinate = macroStabilityOutput.StabilityOutputItems[0].CircleSurfacePointRightXCoordinate;
GeometryPoint limitPointForShoulderDesign = damKernelInput.Location.SurfaceLine.GetLimitPointForShoulderDesign();
evaluationMessage = String.Format(Resources.FactorAchievedVsFactorRequired, fosAchieved, fosRequired);
if (exitPointXCoordinate > limitPointForShoulderDesign.X)
{
designAdvise = DesignAdvise.ShoulderInwards;
}
else
{
designAdvise = DesignAdvise.SlopeInwards;
}
bool isDesignReady = fosAchieved >= fosRequired;
if (isDesignReady)
{
designAdvise = DesignAdvise.None;
}
return isDesignReady;
}
///
/// Prepares the design.
///
/// The kernel data input.
/// The kernel data output.
/// The dam kernel input.
/// Index of the iteration.
/// The embankment design parameters.
public void PrepareDesign(IKernelDataInput kernelDataInput, IKernelDataOutput kernelDataOutput, DamKernelInput damKernelInput,
int iterationIndex, out EmbankmentDesignParameters embankmentDesignParameters)
{
MacroStabilityKernelDataInput macroStabilityKernelDataInput = kernelDataInput as MacroStabilityKernelDataInput;
ThrowWhenMacroStabilityKernelInputNull(macroStabilityKernelDataInput);
lastIterationIndex = iterationIndex;
var location = damKernelInput.Location;
//ToDo MWDAM-1356: Not clear yet what parts are required for input. subSoilScenario, riverLevel and others might be necessary for CreateXmlInput
//MStabModelType model = MStabModelType.UpliftVan;
//var subSoilScenario = damKernelInput.SubSoilScenario;
//double riverLevel = damKernelInput.RiverLevelHigh;
EmbankmentDesignParameters embankmentDesignParametersForKernelInput;
if (iterationIndex < 1)
{
// This is the first (initial) call to prepareDesign.
// The embankment material is set to DikeEmbankmentMaterial, because the next iteration (Index = 1) will be height adaption
embankmentDesignParameters = new EmbankmentDesignParameters()
{
EmbankmentMaterialname = location.DikeEmbankmentMaterial,
};
//ToDo MWDAM-? Use FailureMechanismParametersMStab or create new one?
FailureMechanismParametersMStab.EmbankmentDesignParameters = embankmentDesignParameters;
embankmentDesignParametersForKernelInput = null;
}
else
{
// Calculation iterations start with IterationIndex = 1.
// When IterationIndex = 1: height adaption.
// When Iteration > 1: Slope/Shoulder adaption.
// Starting from IterationIndex 2 the following parameters should be used:
// - The embankment material is set to ShoulderEmbankmentMaterial.
// - The previous geometry is set to the height adapted geometry (name is constructed with iteration index 1).
if (iterationIndex == 2)
{
FailureMechanismParametersMStab.EmbankmentDesignParameters.EmbankmentMaterialname = location.ShoulderEmbankmentMaterial;
}
// In the following prepareDesign calls just return the stored embankmentDesignParameters
embankmentDesignParameters = FailureMechanismParametersMStab.EmbankmentDesignParameters;
embankmentDesignParametersForKernelInput = embankmentDesignParameters;
}
// var xmlInput = CreateXmlInput(macroStabilityKernelDataInput, embankmentDesignParametersForKernelInput);
// var prepareResult = PrepareKernel(xmlInput);
// if (prepareResult != PrepareResult.Successful)
{
throw new MacroStabilityException(Resources.MacroStabilityKernelWrapper_PrepareForMacroStabilityDidNotSucceed);
}
}
///
/// Gets the design strategy
///
///
///
public DesignStrategy GetDesignStrategy(DamKernelInput damKernelInput)
{
switch (damKernelInput.Location.StabilityDesignMethod)
{
case StabilityDesignMethod.OptimizedSlopeAndShoulderAdaption:
return DesignStrategy.OptimizedSlopeAndShoulderAdaption;
case StabilityDesignMethod.SlopeAdaptionBeforeShoulderAdaption:
return DesignStrategy.SlopeAdaptionBeforeShoulderAdaption;
default:
return DesignStrategy.NoDesignPossible;
}
}
}
}