// Copyright (C) Stichting Deltares 2019. All rights reserved. // // This file is part of the Dam Engine. // // The Dam Engine is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . // // All names, logos, and references to "Deltares" are registered trademarks of // Stichting Deltares and remain full property of Stichting Deltares at all times. // All rights reserved. using System.Collections.Generic; using System.Data; using Deltares.DamEngine.Calculators.KernelWrappers.Common; using Deltares.DamEngine.Calculators.KernelWrappers.DamPipingSellmeijer4Forces; using Deltares.DamEngine.Calculators.KernelWrappers.Interfaces; using Deltares.DamEngine.Calculators.KernelWrappers.WtiPipingSellmeijerRevised; using Deltares.DamEngine.Data.Design; using Deltares.DamEngine.Data.General; using Deltares.DamEngine.Data.General.Results; using Deltares.DamEngine.Data.Geotechnics; using Deltares.DamEngine.Data.Standard.Calculation; using Deltares.DamEngine.Data.Standard.Logging; using Deltares.DamEngine.TestHelpers.Factories; using Deltares.WTIPiping; using NUnit.Framework; namespace Deltares.DamEngine.Calculators.Tests.KernelWrappers.WtiPipingSellmeijerRevised { [TestFixture] public class WtiPipingSellmeijerRevisedKernelWrapperTests { [TestCase(0, 49.5, 1860.9050036726026, 1302.9335025708217, 1302.6335025708217, 0.037999943884683543)] [TestCase(10, 59.5, 2196.3999536424808, 1537.7799675497363, 1537.4799675497363, 0.038699691219277771)] [TestCase(-10, 39.5, 1519.6869237263827, 1064.0808466084677, 1063.7808466084678, 0.037131708214086942)] public void TestFullCalculation(double distanceToEntryPoint, double expectedSeepageLength, double expectedFoSbe, double expectedHcbe, double expectedDeltaPhiCbe, double expectedCcreep) { // expected results are based on test in Sellmeijer2011CalculatorTests, CalculateTestValues // as performed in the Wti kernel itself. const double diff = 0.0001; var location = new Location("Location 1") { DistanceToEntryPoint = distanceToEntryPoint, SurfaceLine = FactoryForSurfaceLines.CreateSurfaceLineForWtiPiping(), ModelFactors = { UpliftCriterionPiping = 1.0 }, ModelParametersForPlLines = { DampingFactorPl3 = 0.25, DampingFactorPl4 = 0.10 } }; location.Scenarios.Add(new DesignScenario()); var designScenario = new DesignScenario { LocationScenarioID = "1", Location = location, }; var subSoilScenario = new SoilGeometryProbability { SoilProfile1D = FactoryForSoilProfiles.CreatePipingSellmeijerProfileWithOneSandlayer(), SegmentFailureMechanismType = SegmentFailureMechanismType.Piping }; var damFailureMechanismeCalculationSpecification = new DamFailureMechanismeCalculationSpecification() { FailureMechanismSystemType = FailureMechanismSystemType.Piping, PipingModelType = PipingModelType.Wti2017 }; var damKernelInput = new DamKernelInput { Location = location, SubSoilScenario = subSoilScenario, RiverLevelHigh = 1.0, DamFailureMechanismeCalculationSpecification = damFailureMechanismeCalculationSpecification }; var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper(); // Prepare the wrapper. Result is input for the calculation dll IKernelDataInput damPipingInput; IKernelDataOutput kernelDataOutput; kernelWrapper.Prepare(damKernelInput, 0, out damPipingInput, out kernelDataOutput); // The factory used here in the Engine to create the soilprofile uses Physics.FactorMicroMeterToMeter in setting the D70. // The original test in WTI piping kernel uses the D70 without this factor so in order to get the same results here, // correct the D70 for this here. (damPipingInput as WtiPipingSellmeijerRevisedInput).D70 = (damPipingInput as WtiPipingSellmeijerRevisedInput).D70 * (1/Physics.FactorMicroMeterToMeter); // Validate the input List messages; kernelWrapper.Validate(damPipingInput, kernelDataOutput, out messages); Assert.AreEqual(0, messages.Count); // Run the dll. All expected results are from calculation by hand. kernelWrapper.Execute(damPipingInput, kernelDataOutput, out messages); var damPipingOutput = (WtiPipingSellmeijerRevisedOutput)kernelDataOutput; Assert.AreEqual(0, messages.Count); Assert.AreEqual(expectedFoSbe, damPipingOutput.FoSbe, diff); Assert.AreEqual(expectedHcbe, damPipingOutput.Hcbe, diff); Assert.AreEqual(expectedDeltaPhiCbe, damPipingOutput.DeltaPhiCbe, diff); Assert.AreEqual(0.56948691811077123, damPipingOutput.FoSu, diff); Assert.AreEqual(0.56948691811077123, damPipingOutput.Hcu, diff); Assert.AreEqual(0.4271151885830784, damPipingOutput.DeltaPhiCu, diff); Assert.AreEqual(4.19, damPipingOutput.EffectiveStress, diff); Assert.AreEqual(expectedSeepageLength, damPipingOutput.SeepageLength, diff); // Fill the design results List results; kernelWrapper.PostProcess(damKernelInput, damPipingOutput, designScenario, "", out results); foreach (var result in results) { Assert.AreEqual(FailureMechanismSystemType.Piping, result.DamFailureMechanismeCalculation.FailureMechanismSystemType); Assert.AreEqual(PipingModelType.Wti2017, result.DamFailureMechanismeCalculation.PipingModelType); Assert.IsNotNullOrEmpty(result.LocationName); Assert.IsNotNullOrEmpty(result.ScenarioName); Assert.IsNotNullOrEmpty(result.ProfileName); Assert.AreEqual(90, result.PipingDesignResults.Wti2017BackwardErosionSafetyFactor, diff); Assert.AreEqual(expectedHcbe, result.PipingDesignResults.Wti2017BackwardErosionHcritical, diff); Assert.AreEqual(expectedDeltaPhiCbe, result.PipingDesignResults.Wti2017BackwardErosionDeltaPhiC, diff); Assert.AreEqual(0.70, result.PipingDesignResults.Wti2017BackwardErosionDeltaPhiReduced, diff); Assert.AreEqual(0.56948691811077123, result.PipingDesignResults.Wti2017UpliftSafetyFactor, diff); Assert.AreEqual(0.56948691811077123, result.PipingDesignResults.Wti2017UpliftHcritical, diff); Assert.AreEqual(0.4271151885830784, result.PipingDesignResults.Wti2017UpliftDeltaPhiC, diff); Assert.AreEqual(0.40, result.PipingDesignResults.Wti2017HeaveSafetyFactor, diff); Assert.AreEqual(0.40, result.PipingDesignResults.Wti2017HeaveHcritical, diff); Assert.AreEqual(0.75, result.PipingDesignResults.Wti2017Gradient, diff); Assert.AreEqual(4.19, result.PipingDesignResults.EffectiveStress, diff); Assert.AreEqual(expectedCcreep, result.PipingDesignResults.CCreep, diff); Assert.AreEqual(90, result.PipingDesignResults.Wti2017SafetyFactorOverall, diff); Assert.AreEqual(expectedHcbe, result.PipingDesignResults.Wti2017HcriticalOverall, diff); Assert.AreEqual(59.5, result.PipingDesignResults.LocalExitPointX); Assert.AreEqual(0.88258734130293759, result.PipingDesignResults.UpliftFactor); Assert.AreEqual(true, result.PipingDesignResults.UpliftSituation != null && ((UpliftSituation)result.PipingDesignResults.UpliftSituation).IsUplift); Assert.AreEqual(CalculationResult.Succeeded, result.CalculationResult); Assert.AreEqual(location.SurfaceLine, result.PipingDesignResults.RedesignedSurfaceLine); } } [TestCase(0, 49.5)] [TestCase(10, 59.5)] [TestCase(-10, 39.5)] public void TestPrepareWithInfluenceOfDistanceToEntryPoint(double distanceToEnrtyPoint, double expectedSeepageLength) { const double diff = 0.0001; var location = new Location { DistanceToEntryPoint = distanceToEnrtyPoint, SurfaceLine = FactoryForSurfaceLines.CreateSurfaceLineForWtiPiping(), ModelFactors = { UpliftCriterionPiping = 1.0 }, ModelParametersForPlLines = { DampingFactorPl3 = 0.25, DampingFactorPl4 = 0.10 } }; location.Scenarios.Add(new DesignScenario()); var subSoilScenario = new SoilGeometryProbability { SoilProfile1D = FactoryForSoilProfiles.CreatePipingSellmeijerProfileWithOneSandlayer(), SegmentFailureMechanismType = SegmentFailureMechanismType.Piping }; var damFailureMechanismeCalculationSpecification = new DamFailureMechanismeCalculationSpecification() { FailureMechanismSystemType = FailureMechanismSystemType.Piping, PipingModelType = PipingModelType.Wti2017 }; var damKernelInput = new DamKernelInput { Location = location, SubSoilScenario = subSoilScenario, RiverLevelHigh = 1.0, DamFailureMechanismeCalculationSpecification = damFailureMechanismeCalculationSpecification }; var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper(); IKernelDataInput kernelDataInput; IKernelDataOutput kernelDataOutput; kernelWrapper.Prepare(damKernelInput, 0, out kernelDataInput, out kernelDataOutput); var damPipingInput = (WtiPipingSellmeijerRevisedInput)kernelDataInput; var damPipingOutput = (WtiPipingSellmeijerRevisedOutput)kernelDataOutput; Assert.AreEqual(1.0, damPipingInput.HRiver, diff); Assert.AreEqual(0.0, damPipingInput.HExit, diff); Assert.AreEqual(0.3, damPipingInput.Rc, diff); Assert.AreEqual(1.0, damPipingInput.DTotal, diff); Assert.AreEqual(8.0, damPipingInput.DAquifer, diff); Assert.AreEqual(expectedSeepageLength, damPipingInput.SeepageLength, diff); Assert.AreEqual(0.000200, damPipingInput.D70, diff); Assert.AreEqual(0.25, damPipingInput.WhitesDragCoefficient, diff); Assert.AreEqual(37.0, damPipingInput.BeddingAngle, diff); Assert.AreEqual(1.33E-06, damPipingInput.KinematicViscosityWater, diff); Assert.AreEqual(0.0001, damPipingInput.DarcyPermeability, diff); Assert.AreEqual(1.000, damPipingInput.ModelFactorUplift, diff); Assert.AreEqual(4.19, damPipingInput.EffectiveStress, diff); Assert.AreEqual(0.75, damPipingInput.PhiExit, diff); Assert.AreEqual(0.75, damPipingInput.RExit, diff); Assert.AreEqual(0.00, damPipingInput.PhiPolder, diff); // All expected results are from calculation by hand. Assert.AreEqual(4.19, damPipingOutput.EffectiveStress, diff); Assert.AreEqual(59.50, damPipingOutput.ExitPointX, diff); Assert.AreEqual(0.88258734130293759, damPipingOutput.UpliftFactor, diff); Assert.AreEqual(true, damPipingOutput.UpliftSituation.IsUplift); } [Test] public void TestValidate() { var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper(); // Validate without setting values. Expected error messages. var damPipingInput = new WtiPipingSellmeijerRevisedInput(); var damPipingOutput = new WtiPipingSellmeijerRevisedOutput(); List messages; kernelWrapper.Validate(damPipingInput, damPipingOutput, out messages); Assert.IsTrue(messages.Count > 0); // Validate the input when valid input is provided. Expected no messages. damPipingInput = new WtiPipingSellmeijerRevisedInput() { HRiver = 1.0, HExit = 0.0, Rc = 0.3, DTotal = 2.0, DAquifer = 8.0, SeepageLength = 40.5, D70 = 200.0, WhitesDragCoefficient = 0.25, BeddingAngle = 37.0, KinematicViscosityWater = 1.33E-06, DarcyPermeability = 0.0001, RExit = 0.25 }; messages.Clear(); kernelWrapper.Validate(damPipingInput, damPipingOutput, out messages); Assert.AreEqual(0, messages.Count); } [Test] public void TestPostProcess() { var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper(); var subSoilScenario = new SoilGeometryProbability { SoilProfile1D = FactoryForSoilProfiles.CreatePipingSellmeijerProfileWithOneSandlayer(), SegmentFailureMechanismType = SegmentFailureMechanismType.Piping }; var damFailureMechanismeCalculationSpecification = new DamFailureMechanismeCalculationSpecification() { FailureMechanismSystemType = FailureMechanismSystemType.Piping, PipingModelType = PipingModelType.Wti2017 }; var input = new DamKernelInput { Location = new Location(), SubSoilScenario = subSoilScenario, DamFailureMechanismeCalculationSpecification = damFailureMechanismeCalculationSpecification }; input.Location = new Location(); input.Location.Scenarios.Add(new DesignScenario()); var upliftSituation = new UpliftSituation { IsUplift = true }; var calculationResult = CalculationResult.Succeeded; var output = new WtiPipingSellmeijerRevisedOutput() { SeepageLength = 30, FoSbe = 1.1, Hcbe = 2.2, DeltaPhiCbe = 1.3, DeltaPhibe = 11.3, ExitPointX = 3.3, UpliftFactor = 4.4, UpliftSituation = upliftSituation, CalculationResult = calculationResult, FoSu = 5.5, Hcu = 6.6, DeltaPhiCu = 7.7, FoSh = 3.4, Hch = 11.1, Gradient = 1.11, EffectiveStress = 321.21 }; var designScenario = new DesignScenario { Location = input.Location }; List results; kernelWrapper.PostProcess(input, output, designScenario, "", out results); foreach (var result in results) { Assert.AreEqual(output.FoSbe, result.PipingDesignResults.Wti2017BackwardErosionSafetyFactor); Assert.AreEqual(output.Hcbe, result.PipingDesignResults.Wti2017BackwardErosionHcritical); Assert.AreEqual(output.DeltaPhiCbe, result.PipingDesignResults.Wti2017BackwardErosionDeltaPhiC); Assert.AreEqual(output.DeltaPhibe, result.PipingDesignResults.Wti2017BackwardErosionDeltaPhiReduced); Assert.AreEqual(output.FoSu, result.PipingDesignResults.Wti2017UpliftSafetyFactor); Assert.AreEqual(output.Hcu, result.PipingDesignResults.Wti2017UpliftHcritical); Assert.AreEqual(output.DeltaPhiCu, result.PipingDesignResults.Wti2017UpliftDeltaPhiC); Assert.AreEqual(output.FoSh, result.PipingDesignResults.Wti2017HeaveSafetyFactor); Assert.AreEqual(output.Hch, result.PipingDesignResults.Wti2017HeaveHcritical); Assert.AreEqual(output.Gradient, result.PipingDesignResults.Wti2017Gradient); Assert.AreEqual(output.EffectiveStress, result.PipingDesignResults.EffectiveStress); // CCreep is calculated by hand. Assert.AreEqual(23.076923076923077, result.PipingDesignResults.CCreep); // Overall results (FoS and Hc) are taken from the case with maximum FoS from Uplift (u), Heave (h) and Backward Erorsion (be) // Here this is uplift, so the results must be equal to those of Uplift. Assert.AreEqual(output.FoSu, result.PipingDesignResults.Wti2017SafetyFactorOverall); Assert.AreEqual(output.Hcu, result.PipingDesignResults.Wti2017HcriticalOverall); Assert.AreEqual(output.ExitPointX, result.PipingDesignResults.LocalExitPointX); Assert.AreEqual(output.UpliftFactor, result.PipingDesignResults.UpliftFactor); Assert.AreEqual(output.UpliftSituation, result.PipingDesignResults.UpliftSituation); Assert.AreEqual(output.CalculationResult, result.CalculationResult); Assert.AreEqual(input.Location.SurfaceLine, result.PipingDesignResults.RedesignedSurfaceLine); } } [Test] [ExpectedException(typeof(NoNullAllowedException), ExpectedMessage = "Geen invoer object gedefinieerd voor WTI Sellmeijer Revised")] [SetUICulture("nl-NL")] public void TestLanguageNLThrowsExceptionInExecuteWhenInputIsNull() { var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper(); List messages; kernelWrapper.Execute(null, null, out messages); } [Test] [ExpectedException(typeof(NoNullAllowedException), ExpectedMessage = "No input object defined for WTI Sellmeijer Revised")] [SetUICulture("en-US")] public void TestLanguageENThrowsExceptionInExecuteWhenInputIsNull() { var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper(); List messages; kernelWrapper.Execute(null, null, out messages); } [Test] [ExpectedException(typeof(NoNullAllowedException), ExpectedMessage = "Geen uitvoer object gedefinieerd voor WTI Sellmeijer Revised")] [SetUICulture("nl-NL")] public void TestThrowsExceptionInPostProcessWhenOutputIsNull() { var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper(); List results; kernelWrapper.PostProcess(new DamKernelInput(), null, null, "", out results); } [Test] [ExpectedException(typeof(NoNullAllowedException), ExpectedMessage = "Geen invoer object gedefinieerd voor WTI Sellmeijer Revised")] [SetUICulture("nl-NL")] public void TestThrowsExceptionInPostProcessWhenInputIsNull() { var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper(); List results; kernelWrapper.PostProcess(null, new DamPipingSellmeijer4ForcesOutput(), null, "", out results); } [TestCase(CharacteristicPointType.BottomDitchPolderSide, PipingCharacteristicPointType.BottomDitchPolderSide)] [TestCase(CharacteristicPointType.BottomDitchDikeSide, PipingCharacteristicPointType.BottomDitchDikeSide)] [TestCase(CharacteristicPointType.DikeLine, PipingCharacteristicPointType.None)] [TestCase(CharacteristicPointType.DikeToeAtPolder, PipingCharacteristicPointType.DikeToeAtPolder)] [TestCase(CharacteristicPointType.DikeToeAtRiver, PipingCharacteristicPointType.None)] [TestCase(CharacteristicPointType.DikeTopAtPolder, PipingCharacteristicPointType.None)] [TestCase(CharacteristicPointType.DikeTopAtRiver, PipingCharacteristicPointType.None)] [TestCase(CharacteristicPointType.DitchDikeSide, PipingCharacteristicPointType.DitchDikeSide)] [TestCase(CharacteristicPointType.DitchPolderSide, PipingCharacteristicPointType.DitchPolderSide)] [TestCase(CharacteristicPointType.None, PipingCharacteristicPointType.None)] [TestCase(CharacteristicPointType.ShoulderBaseInside, PipingCharacteristicPointType.ShoulderBaseInside)] [TestCase(CharacteristicPointType.ShoulderBaseOutside, PipingCharacteristicPointType.None)] [TestCase(CharacteristicPointType.ShoulderTopInside, PipingCharacteristicPointType.None)] [TestCase(CharacteristicPointType.ShoulderTopOutside, PipingCharacteristicPointType.None)] [TestCase(CharacteristicPointType.SurfaceLevelInside, PipingCharacteristicPointType.None)] [TestCase(CharacteristicPointType.SurfaceLevelOutside, PipingCharacteristicPointType.None)] [TestCase(CharacteristicPointType.TrafficLoadInside, PipingCharacteristicPointType.None)] [TestCase(CharacteristicPointType.TrafficLoadOutside, PipingCharacteristicPointType.None)] public void TestConvertToPipingPointType(CharacteristicPointType charPointType, PipingCharacteristicPointType pipingCharacteristicPointType) { Assert.AreEqual(pipingCharacteristicPointType, WtiPipingSellmeijerRevisedKernelWrapper.ConvertToPipingPointType(charPointType)); } [Test] public void TestConvertToPipingSurfaceLine() { const double diff = 0.0001; var surfaceLine = FactoryForSurfaceLines.CreateSurfaceLineForWtiPiping(true); var surfaceLinePiping = WtiPipingSellmeijerRevisedKernelWrapper.ConvertToPipingSurfaceLine(surfaceLine); Assert.AreEqual(12, surfaceLinePiping.Points.Count); // Check some coodinates and types Assert.AreEqual(34.5, surfaceLinePiping.Points[2].X, diff); Assert.AreEqual(0, surfaceLinePiping.Points[2].Y, diff); Assert.AreEqual(5, surfaceLinePiping.Points[2].Z, diff); Assert.AreEqual(PipingCharacteristicPointType.None, surfaceLinePiping.Points[2].Type); Assert.AreEqual(38.5, surfaceLinePiping.Points[4].X, diff); Assert.AreEqual(0, surfaceLinePiping.Points[4].Y, diff); Assert.AreEqual(5, surfaceLinePiping.Points[4].Z, diff); Assert.AreEqual(PipingCharacteristicPointType.None, surfaceLinePiping.Points[4].Type); Assert.AreEqual(58.5, surfaceLinePiping.Points[7].X, diff); Assert.AreEqual(0, surfaceLinePiping.Points[7].Y, diff); Assert.AreEqual(0, surfaceLinePiping.Points[7].Z, diff); Assert.AreEqual(PipingCharacteristicPointType.DitchDikeSide, surfaceLinePiping.Points[7].Type); Assert.AreEqual(61.5, surfaceLinePiping.Points[9].X, diff); Assert.AreEqual(0, surfaceLinePiping.Points[9].Y, diff); Assert.AreEqual(-1, surfaceLinePiping.Points[9].Z, diff); Assert.AreEqual(PipingCharacteristicPointType.BottomDitchPolderSide, surfaceLinePiping.Points[9].Type); } [Test] public void TestConvertToPipingProfile() { const double diff = 0.0001; var profile = FactoryForSoilProfiles.CreatePipingSellmeijerProfileWithOneSandlayer(); var profilePiping = WtiPipingSellmeijerRevisedKernelWrapper.ConvertToPipingProfile(profile); Assert.AreEqual(2, profilePiping.Layers.Count); Assert.AreEqual(10, profilePiping.Layers[0].TopLevel, diff); Assert.AreEqual(11, profilePiping.Layers[0].AbovePhreaticLevel, diff); Assert.AreEqual(14, profilePiping.Layers[0].BelowPhreaticLevel, diff); Assert.AreEqual(false, profilePiping.Layers[0].IsAquifer); Assert.AreEqual(double.NaN, profilePiping.Layers[0].DryUnitWeight, diff); Assert.AreEqual(-2, profilePiping.Layers[1].TopLevel, diff); Assert.AreEqual(20, profilePiping.Layers[1].AbovePhreaticLevel, diff); Assert.AreEqual(22, profilePiping.Layers[1].BelowPhreaticLevel, diff); Assert.AreEqual(true, profilePiping.Layers[1].IsAquifer); Assert.AreEqual(double.NaN, profilePiping.Layers[1].DryUnitWeight, diff); Assert.AreEqual(-10, profilePiping.BottomLevel, diff); } [Test] public void TestAssignFailedValuesWtiUplift() { var output = new WtiPipingSellmeijerRevisedOutput(); // Uplift output.FoSu = 1; output.Hcu = 1; output.DeltaPhiCu = 1; // Heave output.FoSh = 1; output.Hch = 1; output.Gradient = 1; // Sellmeijer revised output.FoSbe = 1; output.Hcbe = 1; output.DeltaPhiCbe = 1; WtiPipingSellmeijerRevisedKernelWrapper.AssignFailedValuesWtiUplift(output); // Uplift Assert.AreEqual(0, output.FoSu); Assert.AreEqual(0, output.Hcu); Assert.AreEqual(0, output.DeltaPhiCu); // Heave Assert.AreEqual(1, output.FoSh); Assert.AreEqual(1, output.Hch); Assert.AreEqual(1, output.Gradient); // Sellmeijer revised Assert.AreEqual(1, output.FoSbe); Assert.AreEqual(1, output.Hcbe); Assert.AreEqual(1, output.DeltaPhiCbe); } [Test] public void TestAssignFailedValuesWtiHeave() { var output = new WtiPipingSellmeijerRevisedOutput(); // Uplift output.FoSu = 1; output.Hcu = 1; output.DeltaPhiCu = 1; // Heave output.FoSh = 1; output.Hch = 1; output.Gradient = 1; // Sellmeijer revised output.FoSbe = 1; output.Hcbe = 1; output.DeltaPhiCbe = 1; WtiPipingSellmeijerRevisedKernelWrapper.AssignFailedValuesWtiHeave(output); // Uplift Assert.AreEqual(1, output.FoSu); Assert.AreEqual(1, output.Hcu); Assert.AreEqual(1, output.DeltaPhiCu); // Heave Assert.AreEqual(0, output.FoSh); Assert.AreEqual(0, output.Hch); Assert.AreEqual(0, output.Gradient); // Sellmeijer revised Assert.AreEqual(1, output.FoSbe); Assert.AreEqual(1, output.Hcbe); Assert.AreEqual(1, output.DeltaPhiCbe); } [Test] public void TestAssignFailedValuesWtiSellmeijerRevised() { var output = new WtiPipingSellmeijerRevisedOutput(); // Uplift output.FoSu = 1; output.Hcu = 1; output.DeltaPhiCu = 1; // Heave output.FoSh = 1; output.Hch = 1; output.Gradient = 1; // Sellmeijer revised output.FoSbe = 1; output.Hcbe = 1; output.DeltaPhiCbe = 1; WtiPipingSellmeijerRevisedKernelWrapper.AssignFailedValuesWtiSellmeijerRevised(output); // Uplift Assert.AreEqual(1, output.FoSu); Assert.AreEqual(1, output.Hcu); Assert.AreEqual(1, output.DeltaPhiCu); // Heave Assert.AreEqual(1, output.FoSh); Assert.AreEqual(1, output.Hch); Assert.AreEqual(1, output.Gradient); // Sellmeijer revised Assert.AreEqual(0, output.FoSbe); Assert.AreEqual(0, output.Hcbe); Assert.AreEqual(0, output.DeltaPhiCbe); } } }