// Copyright (C) Stichting Deltares 2019. All rights reserved.
//
// This file is part of the Dam Engine.
//
// The Dam Engine is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see .
//
// All names, logos, and references to "Deltares" are registered trademarks of
// Stichting Deltares and remain full property of Stichting Deltares at all times.
// All rights reserved.
using System.Collections.Generic;
using System.Data;
using Deltares.DamEngine.Calculators.KernelWrappers.Common;
using Deltares.DamEngine.Calculators.KernelWrappers.DamPipingSellmeijer4Forces;
using Deltares.DamEngine.Calculators.KernelWrappers.Interfaces;
using Deltares.DamEngine.Calculators.KernelWrappers.WtiPipingSellmeijerRevised;
using Deltares.DamEngine.Data.Design;
using Deltares.DamEngine.Data.General;
using Deltares.DamEngine.Data.General.Results;
using Deltares.DamEngine.Data.Geotechnics;
using Deltares.DamEngine.Data.Standard.Calculation;
using Deltares.DamEngine.Data.Standard.Logging;
using Deltares.DamEngine.TestHelpers.Factories;
using Deltares.WTIPiping;
using NUnit.Framework;
namespace Deltares.DamEngine.Calculators.Tests.KernelWrappers.WtiPipingSellmeijerRevised
{
[TestFixture]
public class WtiPipingSellmeijerRevisedKernelWrapperTests
{
[TestCase(0, 49.5, 1860.9050036726026, 1302.9335025708217, 1302.6335025708217, 0.037999943884683543)]
[TestCase(10, 59.5, 2196.3999536424808, 1537.7799675497363, 1537.4799675497363, 0.038699691219277771)]
[TestCase(-10, 39.5, 1519.6869237263827, 1064.0808466084677, 1063.7808466084678, 0.037131708214086942)]
public void TestFullCalculation(double distanceToEntryPoint, double expectedSeepageLength, double expectedFoSbe, double expectedHcbe,
double expectedDeltaPhiCbe, double expectedCcreep)
{
// expected results are based on test in Sellmeijer2011CalculatorTests, CalculateTestValues
// as performed in the Wti kernel itself.
const double diff = 0.0001;
var location = new Location("Location 1")
{
DistanceToEntryPoint = distanceToEntryPoint,
SurfaceLine = FactoryForSurfaceLines.CreateSurfaceLineForWtiPiping(),
ModelFactors =
{
UpliftCriterionPiping = 1.0
},
ModelParametersForPlLines =
{
DampingFactorPl3 = 0.25,
DampingFactorPl4 = 0.10
}
};
location.Scenarios.Add(new DesignScenario());
var designScenario = new DesignScenario
{
LocationScenarioID = "1",
Location = location,
};
var subSoilScenario = new SoilGeometryProbability
{
SoilProfile1D = FactoryForSoilProfiles.CreatePipingSellmeijerProfileWithOneSandlayer(),
SegmentFailureMechanismType = SegmentFailureMechanismType.Piping
};
var damFailureMechanismeCalculationSpecification = new DamFailureMechanismeCalculationSpecification()
{
FailureMechanismSystemType = FailureMechanismSystemType.Piping,
PipingModelType = PipingModelType.Wti2017
};
var damKernelInput = new DamKernelInput
{
Location = location,
SubSoilScenario = subSoilScenario,
RiverLevelHigh = 1.0,
DamFailureMechanismeCalculationSpecification = damFailureMechanismeCalculationSpecification
};
var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper();
// Prepare the wrapper. Result is input for the calculation dll
IKernelDataInput damPipingInput;
IKernelDataOutput kernelDataOutput;
kernelWrapper.Prepare(damKernelInput, 0, out damPipingInput, out kernelDataOutput);
// The factory used here in the Engine to create the soilprofile uses Physics.FactorMicroMeterToMeter in setting the D70.
// The original test in WTI piping kernel uses the D70 without this factor so in order to get the same results here,
// correct the D70 for this here.
(damPipingInput as WtiPipingSellmeijerRevisedInput).D70 = (damPipingInput as WtiPipingSellmeijerRevisedInput).D70 * (1/Physics.FactorMicroMeterToMeter);
// Validate the input
List messages;
kernelWrapper.Validate(damPipingInput, kernelDataOutput, out messages);
Assert.AreEqual(0, messages.Count);
// Run the dll. All expected results are from calculation by hand.
kernelWrapper.Execute(damPipingInput, kernelDataOutput, out messages);
var damPipingOutput = (WtiPipingSellmeijerRevisedOutput)kernelDataOutput;
Assert.AreEqual(0, messages.Count);
Assert.AreEqual(expectedFoSbe, damPipingOutput.FoSbe, diff);
Assert.AreEqual(expectedHcbe, damPipingOutput.Hcbe, diff);
Assert.AreEqual(expectedDeltaPhiCbe, damPipingOutput.DeltaPhiCbe, diff);
Assert.AreEqual(0.56948691811077123, damPipingOutput.FoSu, diff);
Assert.AreEqual(0.56948691811077123, damPipingOutput.Hcu, diff);
Assert.AreEqual(0.4271151885830784, damPipingOutput.DeltaPhiCu, diff);
Assert.AreEqual(4.19, damPipingOutput.EffectiveStress, diff);
Assert.AreEqual(expectedSeepageLength, damPipingOutput.SeepageLength, diff);
// Fill the design results
List results;
kernelWrapper.PostProcess(damKernelInput, damPipingOutput, designScenario, "", out results);
foreach (var result in results)
{
Assert.AreEqual(FailureMechanismSystemType.Piping, result.DamFailureMechanismeCalculation.FailureMechanismSystemType);
Assert.AreEqual(PipingModelType.Wti2017, result.DamFailureMechanismeCalculation.PipingModelType);
Assert.IsNotNullOrEmpty(result.LocationName);
Assert.IsNotNullOrEmpty(result.ScenarioName);
Assert.IsNotNullOrEmpty(result.ProfileName);
Assert.AreEqual(90, result.PipingDesignResults.Wti2017BackwardErosionSafetyFactor, diff);
Assert.AreEqual(expectedHcbe, result.PipingDesignResults.Wti2017BackwardErosionHcritical, diff);
Assert.AreEqual(expectedDeltaPhiCbe, result.PipingDesignResults.Wti2017BackwardErosionDeltaPhiC, diff);
Assert.AreEqual(0.70, result.PipingDesignResults.Wti2017BackwardErosionDeltaPhiReduced, diff);
Assert.AreEqual(0.56948691811077123, result.PipingDesignResults.Wti2017UpliftSafetyFactor, diff);
Assert.AreEqual(0.56948691811077123, result.PipingDesignResults.Wti2017UpliftHcritical, diff);
Assert.AreEqual(0.4271151885830784, result.PipingDesignResults.Wti2017UpliftDeltaPhiC, diff);
Assert.AreEqual(0.40, result.PipingDesignResults.Wti2017HeaveSafetyFactor, diff);
Assert.AreEqual(0.40, result.PipingDesignResults.Wti2017HeaveHcritical, diff);
Assert.AreEqual(0.75, result.PipingDesignResults.Wti2017Gradient, diff);
Assert.AreEqual(4.19, result.PipingDesignResults.EffectiveStress, diff);
Assert.AreEqual(expectedCcreep, result.PipingDesignResults.CCreep, diff);
Assert.AreEqual(90, result.PipingDesignResults.Wti2017SafetyFactorOverall, diff);
Assert.AreEqual(expectedHcbe, result.PipingDesignResults.Wti2017HcriticalOverall, diff);
Assert.AreEqual(59.5, result.PipingDesignResults.LocalExitPointX);
Assert.AreEqual(0.88258734130293759, result.PipingDesignResults.UpliftFactor);
Assert.AreEqual(true, result.PipingDesignResults.UpliftSituation != null && ((UpliftSituation)result.PipingDesignResults.UpliftSituation).IsUplift);
Assert.AreEqual(CalculationResult.Succeeded, result.CalculationResult);
Assert.AreEqual(location.SurfaceLine, result.PipingDesignResults.RedesignedSurfaceLine);
}
}
[TestCase(0, 49.5)]
[TestCase(10, 59.5)]
[TestCase(-10, 39.5)]
public void TestPrepareWithInfluenceOfDistanceToEntryPoint(double distanceToEnrtyPoint, double expectedSeepageLength)
{
const double diff = 0.0001;
var location = new Location
{
DistanceToEntryPoint = distanceToEnrtyPoint,
SurfaceLine = FactoryForSurfaceLines.CreateSurfaceLineForWtiPiping(),
ModelFactors =
{
UpliftCriterionPiping = 1.0
},
ModelParametersForPlLines =
{
DampingFactorPl3 = 0.25,
DampingFactorPl4 = 0.10
}
};
location.Scenarios.Add(new DesignScenario());
var subSoilScenario = new SoilGeometryProbability
{
SoilProfile1D = FactoryForSoilProfiles.CreatePipingSellmeijerProfileWithOneSandlayer(),
SegmentFailureMechanismType = SegmentFailureMechanismType.Piping
};
var damFailureMechanismeCalculationSpecification = new DamFailureMechanismeCalculationSpecification()
{
FailureMechanismSystemType = FailureMechanismSystemType.Piping,
PipingModelType = PipingModelType.Wti2017
};
var damKernelInput = new DamKernelInput
{
Location = location,
SubSoilScenario = subSoilScenario,
RiverLevelHigh = 1.0,
DamFailureMechanismeCalculationSpecification = damFailureMechanismeCalculationSpecification
};
var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper();
IKernelDataInput kernelDataInput;
IKernelDataOutput kernelDataOutput;
kernelWrapper.Prepare(damKernelInput, 0, out kernelDataInput, out kernelDataOutput);
var damPipingInput = (WtiPipingSellmeijerRevisedInput)kernelDataInput;
var damPipingOutput = (WtiPipingSellmeijerRevisedOutput)kernelDataOutput;
Assert.AreEqual(1.0, damPipingInput.HRiver, diff);
Assert.AreEqual(0.0, damPipingInput.HExit, diff);
Assert.AreEqual(0.3, damPipingInput.Rc, diff);
Assert.AreEqual(1.0, damPipingInput.DTotal, diff);
Assert.AreEqual(8.0, damPipingInput.DAquifer, diff);
Assert.AreEqual(expectedSeepageLength, damPipingInput.SeepageLength, diff);
Assert.AreEqual(0.000200, damPipingInput.D70, diff);
Assert.AreEqual(0.25, damPipingInput.WhitesDragCoefficient, diff);
Assert.AreEqual(37.0, damPipingInput.BeddingAngle, diff);
Assert.AreEqual(1.33E-06, damPipingInput.KinematicViscosityWater, diff);
Assert.AreEqual(0.0001, damPipingInput.DarcyPermeability, diff);
Assert.AreEqual(1.000, damPipingInput.ModelFactorUplift, diff);
Assert.AreEqual(4.19, damPipingInput.EffectiveStress, diff);
Assert.AreEqual(0.75, damPipingInput.PhiExit, diff);
Assert.AreEqual(0.75, damPipingInput.RExit, diff);
Assert.AreEqual(0.00, damPipingInput.PhiPolder, diff);
// All expected results are from calculation by hand.
Assert.AreEqual(4.19, damPipingOutput.EffectiveStress, diff);
Assert.AreEqual(59.50, damPipingOutput.ExitPointX, diff);
Assert.AreEqual(0.88258734130293759, damPipingOutput.UpliftFactor, diff);
Assert.AreEqual(true, damPipingOutput.UpliftSituation.IsUplift);
}
[Test]
public void TestValidate()
{
var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper();
// Validate without setting values. Expected error messages.
var damPipingInput = new WtiPipingSellmeijerRevisedInput();
var damPipingOutput = new WtiPipingSellmeijerRevisedOutput();
List messages;
kernelWrapper.Validate(damPipingInput, damPipingOutput, out messages);
Assert.IsTrue(messages.Count > 0);
// Validate the input when valid input is provided. Expected no messages.
damPipingInput = new WtiPipingSellmeijerRevisedInput()
{
HRiver = 1.0,
HExit = 0.0,
Rc = 0.3,
DTotal = 2.0,
DAquifer = 8.0,
SeepageLength = 40.5,
D70 = 200.0,
WhitesDragCoefficient = 0.25,
BeddingAngle = 37.0,
KinematicViscosityWater = 1.33E-06,
DarcyPermeability = 0.0001,
RExit = 0.25
};
messages.Clear();
kernelWrapper.Validate(damPipingInput, damPipingOutput, out messages);
Assert.AreEqual(0, messages.Count);
}
[Test]
public void TestPostProcess()
{
var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper();
var subSoilScenario = new SoilGeometryProbability
{
SoilProfile1D = FactoryForSoilProfiles.CreatePipingSellmeijerProfileWithOneSandlayer(),
SegmentFailureMechanismType = SegmentFailureMechanismType.Piping
};
var damFailureMechanismeCalculationSpecification = new DamFailureMechanismeCalculationSpecification()
{
FailureMechanismSystemType = FailureMechanismSystemType.Piping,
PipingModelType = PipingModelType.Wti2017
};
var input = new DamKernelInput
{
Location = new Location(),
SubSoilScenario = subSoilScenario,
DamFailureMechanismeCalculationSpecification = damFailureMechanismeCalculationSpecification
};
input.Location = new Location();
input.Location.Scenarios.Add(new DesignScenario());
var upliftSituation = new UpliftSituation
{
IsUplift = true
};
var calculationResult = CalculationResult.Succeeded;
var output = new WtiPipingSellmeijerRevisedOutput()
{
SeepageLength = 30,
FoSbe = 1.1,
Hcbe = 2.2,
DeltaPhiCbe = 1.3,
DeltaPhibe = 11.3,
ExitPointX = 3.3,
UpliftFactor = 4.4,
UpliftSituation = upliftSituation,
CalculationResult = calculationResult,
FoSu = 5.5,
Hcu = 6.6,
DeltaPhiCu = 7.7,
FoSh = 3.4,
Hch = 11.1,
Gradient = 1.11,
EffectiveStress = 321.21
};
var designScenario = new DesignScenario
{
Location = input.Location
};
List results;
kernelWrapper.PostProcess(input, output, designScenario, "", out results);
foreach (var result in results)
{
Assert.AreEqual(output.FoSbe, result.PipingDesignResults.Wti2017BackwardErosionSafetyFactor);
Assert.AreEqual(output.Hcbe, result.PipingDesignResults.Wti2017BackwardErosionHcritical);
Assert.AreEqual(output.DeltaPhiCbe, result.PipingDesignResults.Wti2017BackwardErosionDeltaPhiC);
Assert.AreEqual(output.DeltaPhibe, result.PipingDesignResults.Wti2017BackwardErosionDeltaPhiReduced);
Assert.AreEqual(output.FoSu, result.PipingDesignResults.Wti2017UpliftSafetyFactor);
Assert.AreEqual(output.Hcu, result.PipingDesignResults.Wti2017UpliftHcritical);
Assert.AreEqual(output.DeltaPhiCu, result.PipingDesignResults.Wti2017UpliftDeltaPhiC);
Assert.AreEqual(output.FoSh, result.PipingDesignResults.Wti2017HeaveSafetyFactor);
Assert.AreEqual(output.Hch, result.PipingDesignResults.Wti2017HeaveHcritical);
Assert.AreEqual(output.Gradient, result.PipingDesignResults.Wti2017Gradient);
Assert.AreEqual(output.EffectiveStress, result.PipingDesignResults.EffectiveStress);
// CCreep is calculated by hand.
Assert.AreEqual(23.076923076923077, result.PipingDesignResults.CCreep);
// Overall results (FoS and Hc) are taken from the case with maximum FoS from Uplift (u), Heave (h) and Backward Erorsion (be)
// Here this is uplift, so the results must be equal to those of Uplift.
Assert.AreEqual(output.FoSu, result.PipingDesignResults.Wti2017SafetyFactorOverall);
Assert.AreEqual(output.Hcu, result.PipingDesignResults.Wti2017HcriticalOverall);
Assert.AreEqual(output.ExitPointX, result.PipingDesignResults.LocalExitPointX);
Assert.AreEqual(output.UpliftFactor, result.PipingDesignResults.UpliftFactor);
Assert.AreEqual(output.UpliftSituation, result.PipingDesignResults.UpliftSituation);
Assert.AreEqual(output.CalculationResult, result.CalculationResult);
Assert.AreEqual(input.Location.SurfaceLine, result.PipingDesignResults.RedesignedSurfaceLine);
}
}
[Test]
[ExpectedException(typeof(NoNullAllowedException), ExpectedMessage = "Geen invoer object gedefinieerd voor WTI Sellmeijer Revised")]
[SetUICulture("nl-NL")]
public void TestLanguageNLThrowsExceptionInExecuteWhenInputIsNull()
{
var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper();
List messages;
kernelWrapper.Execute(null, null, out messages);
}
[Test]
[ExpectedException(typeof(NoNullAllowedException), ExpectedMessage = "No input object defined for WTI Sellmeijer Revised")]
[SetUICulture("en-US")]
public void TestLanguageENThrowsExceptionInExecuteWhenInputIsNull()
{
var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper();
List messages;
kernelWrapper.Execute(null, null, out messages);
}
[Test]
[ExpectedException(typeof(NoNullAllowedException), ExpectedMessage = "Geen uitvoer object gedefinieerd voor WTI Sellmeijer Revised")]
[SetUICulture("nl-NL")]
public void TestThrowsExceptionInPostProcessWhenOutputIsNull()
{
var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper();
List results;
kernelWrapper.PostProcess(new DamKernelInput(), null, null, "", out results);
}
[Test]
[ExpectedException(typeof(NoNullAllowedException), ExpectedMessage = "Geen invoer object gedefinieerd voor WTI Sellmeijer Revised")]
[SetUICulture("nl-NL")]
public void TestThrowsExceptionInPostProcessWhenInputIsNull()
{
var kernelWrapper = new WtiPipingSellmeijerRevisedKernelWrapper();
List results;
kernelWrapper.PostProcess(null, new DamPipingSellmeijer4ForcesOutput(), null, "", out results);
}
[TestCase(CharacteristicPointType.BottomDitchPolderSide, PipingCharacteristicPointType.BottomDitchPolderSide)]
[TestCase(CharacteristicPointType.BottomDitchDikeSide, PipingCharacteristicPointType.BottomDitchDikeSide)]
[TestCase(CharacteristicPointType.DikeLine, PipingCharacteristicPointType.None)]
[TestCase(CharacteristicPointType.DikeToeAtPolder, PipingCharacteristicPointType.DikeToeAtPolder)]
[TestCase(CharacteristicPointType.DikeToeAtRiver, PipingCharacteristicPointType.None)]
[TestCase(CharacteristicPointType.DikeTopAtPolder, PipingCharacteristicPointType.None)]
[TestCase(CharacteristicPointType.DikeTopAtRiver, PipingCharacteristicPointType.None)]
[TestCase(CharacteristicPointType.DitchDikeSide, PipingCharacteristicPointType.DitchDikeSide)]
[TestCase(CharacteristicPointType.DitchPolderSide, PipingCharacteristicPointType.DitchPolderSide)]
[TestCase(CharacteristicPointType.None, PipingCharacteristicPointType.None)]
[TestCase(CharacteristicPointType.ShoulderBaseInside, PipingCharacteristicPointType.ShoulderBaseInside)]
[TestCase(CharacteristicPointType.ShoulderBaseOutside, PipingCharacteristicPointType.None)]
[TestCase(CharacteristicPointType.ShoulderTopInside, PipingCharacteristicPointType.None)]
[TestCase(CharacteristicPointType.ShoulderTopOutside, PipingCharacteristicPointType.None)]
[TestCase(CharacteristicPointType.SurfaceLevelInside, PipingCharacteristicPointType.None)]
[TestCase(CharacteristicPointType.SurfaceLevelOutside, PipingCharacteristicPointType.None)]
[TestCase(CharacteristicPointType.TrafficLoadInside, PipingCharacteristicPointType.None)]
[TestCase(CharacteristicPointType.TrafficLoadOutside, PipingCharacteristicPointType.None)]
public void TestConvertToPipingPointType(CharacteristicPointType charPointType, PipingCharacteristicPointType pipingCharacteristicPointType)
{
Assert.AreEqual(pipingCharacteristicPointType, WtiPipingSellmeijerRevisedKernelWrapper.ConvertToPipingPointType(charPointType));
}
[Test]
public void TestConvertToPipingSurfaceLine()
{
const double diff = 0.0001;
var surfaceLine = FactoryForSurfaceLines.CreateSurfaceLineForWtiPiping(true);
var surfaceLinePiping = WtiPipingSellmeijerRevisedKernelWrapper.ConvertToPipingSurfaceLine(surfaceLine);
Assert.AreEqual(12, surfaceLinePiping.Points.Count);
// Check some coodinates and types
Assert.AreEqual(34.5, surfaceLinePiping.Points[2].X, diff);
Assert.AreEqual(0, surfaceLinePiping.Points[2].Y, diff);
Assert.AreEqual(5, surfaceLinePiping.Points[2].Z, diff);
Assert.AreEqual(PipingCharacteristicPointType.None, surfaceLinePiping.Points[2].Type);
Assert.AreEqual(38.5, surfaceLinePiping.Points[4].X, diff);
Assert.AreEqual(0, surfaceLinePiping.Points[4].Y, diff);
Assert.AreEqual(5, surfaceLinePiping.Points[4].Z, diff);
Assert.AreEqual(PipingCharacteristicPointType.None, surfaceLinePiping.Points[4].Type);
Assert.AreEqual(58.5, surfaceLinePiping.Points[7].X, diff);
Assert.AreEqual(0, surfaceLinePiping.Points[7].Y, diff);
Assert.AreEqual(0, surfaceLinePiping.Points[7].Z, diff);
Assert.AreEqual(PipingCharacteristicPointType.DitchDikeSide, surfaceLinePiping.Points[7].Type);
Assert.AreEqual(61.5, surfaceLinePiping.Points[9].X, diff);
Assert.AreEqual(0, surfaceLinePiping.Points[9].Y, diff);
Assert.AreEqual(-1, surfaceLinePiping.Points[9].Z, diff);
Assert.AreEqual(PipingCharacteristicPointType.BottomDitchPolderSide, surfaceLinePiping.Points[9].Type);
}
[Test]
public void TestConvertToPipingProfile()
{
const double diff = 0.0001;
var profile = FactoryForSoilProfiles.CreatePipingSellmeijerProfileWithOneSandlayer();
var profilePiping = WtiPipingSellmeijerRevisedKernelWrapper.ConvertToPipingProfile(profile);
Assert.AreEqual(2, profilePiping.Layers.Count);
Assert.AreEqual(10, profilePiping.Layers[0].TopLevel, diff);
Assert.AreEqual(11, profilePiping.Layers[0].AbovePhreaticLevel, diff);
Assert.AreEqual(14, profilePiping.Layers[0].BelowPhreaticLevel, diff);
Assert.AreEqual(false, profilePiping.Layers[0].IsAquifer);
Assert.AreEqual(double.NaN, profilePiping.Layers[0].DryUnitWeight, diff);
Assert.AreEqual(-2, profilePiping.Layers[1].TopLevel, diff);
Assert.AreEqual(20, profilePiping.Layers[1].AbovePhreaticLevel, diff);
Assert.AreEqual(22, profilePiping.Layers[1].BelowPhreaticLevel, diff);
Assert.AreEqual(true, profilePiping.Layers[1].IsAquifer);
Assert.AreEqual(double.NaN, profilePiping.Layers[1].DryUnitWeight, diff);
Assert.AreEqual(-10, profilePiping.BottomLevel, diff);
}
[Test]
public void TestAssignFailedValuesWtiUplift()
{
var output = new WtiPipingSellmeijerRevisedOutput();
// Uplift
output.FoSu = 1;
output.Hcu = 1;
output.DeltaPhiCu = 1;
// Heave
output.FoSh = 1;
output.Hch = 1;
output.Gradient = 1;
// Sellmeijer revised
output.FoSbe = 1;
output.Hcbe = 1;
output.DeltaPhiCbe = 1;
WtiPipingSellmeijerRevisedKernelWrapper.AssignFailedValuesWtiUplift(output);
// Uplift
Assert.AreEqual(0, output.FoSu);
Assert.AreEqual(0, output.Hcu);
Assert.AreEqual(0, output.DeltaPhiCu);
// Heave
Assert.AreEqual(1, output.FoSh);
Assert.AreEqual(1, output.Hch);
Assert.AreEqual(1, output.Gradient);
// Sellmeijer revised
Assert.AreEqual(1, output.FoSbe);
Assert.AreEqual(1, output.Hcbe);
Assert.AreEqual(1, output.DeltaPhiCbe);
}
[Test]
public void TestAssignFailedValuesWtiHeave()
{
var output = new WtiPipingSellmeijerRevisedOutput();
// Uplift
output.FoSu = 1;
output.Hcu = 1;
output.DeltaPhiCu = 1;
// Heave
output.FoSh = 1;
output.Hch = 1;
output.Gradient = 1;
// Sellmeijer revised
output.FoSbe = 1;
output.Hcbe = 1;
output.DeltaPhiCbe = 1;
WtiPipingSellmeijerRevisedKernelWrapper.AssignFailedValuesWtiHeave(output);
// Uplift
Assert.AreEqual(1, output.FoSu);
Assert.AreEqual(1, output.Hcu);
Assert.AreEqual(1, output.DeltaPhiCu);
// Heave
Assert.AreEqual(0, output.FoSh);
Assert.AreEqual(0, output.Hch);
Assert.AreEqual(0, output.Gradient);
// Sellmeijer revised
Assert.AreEqual(1, output.FoSbe);
Assert.AreEqual(1, output.Hcbe);
Assert.AreEqual(1, output.DeltaPhiCbe);
}
[Test]
public void TestAssignFailedValuesWtiSellmeijerRevised()
{
var output = new WtiPipingSellmeijerRevisedOutput();
// Uplift
output.FoSu = 1;
output.Hcu = 1;
output.DeltaPhiCu = 1;
// Heave
output.FoSh = 1;
output.Hch = 1;
output.Gradient = 1;
// Sellmeijer revised
output.FoSbe = 1;
output.Hcbe = 1;
output.DeltaPhiCbe = 1;
WtiPipingSellmeijerRevisedKernelWrapper.AssignFailedValuesWtiSellmeijerRevised(output);
// Uplift
Assert.AreEqual(1, output.FoSu);
Assert.AreEqual(1, output.Hcu);
Assert.AreEqual(1, output.DeltaPhiCu);
// Heave
Assert.AreEqual(1, output.FoSh);
Assert.AreEqual(1, output.Hch);
Assert.AreEqual(1, output.Gradient);
// Sellmeijer revised
Assert.AreEqual(0, output.FoSbe);
Assert.AreEqual(0, output.Hcbe);
Assert.AreEqual(0, output.DeltaPhiCbe);
}
}
}