// Copyright (C) Stichting Deltares 2017. All rights reserved.
//
// This file is part of the Dam Engine.
//
// The Dam Engine is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see .
//
// All names, logos, and references to "Deltares" are registered trademarks of
// Stichting Deltares and remain full property of Stichting Deltares at all times.
// All rights reserved.
using System.Collections.Generic;
using System.Data;
using Deltares.DamEngine.Calculators.KernelWrappers.Common;
using Deltares.DamEngine.Calculators.KernelWrappers.DamPipingSellmeijer4Forces;
using Deltares.DamEngine.Calculators.KernelWrappers.Interfaces;
using Deltares.DamEngine.Data.Design;
using Deltares.DamEngine.Data.General;
using Deltares.DamEngine.Data.General.Results;
using Deltares.DamEngine.Data.Geometry;
using Deltares.DamEngine.Data.Geotechnics;
using Deltares.DamEngine.Data.Standard.Logging;
using NUnit.Framework;
namespace Deltares.DamEngine.Calculators.Tests.KernelWrappers.DamPipingSellmeijer4Forces
{
[TestFixture]
public class DamPipingSellmeijer4ForcesTests
{
[Test]
public void TestFullCalculation()
{
// expected results are based on test in 'https://repos.deltares.nl/repos/dam/dam classic' revision 190
// reducedFall = HRiver - HExit - (Rc * DTotal) = 1.0 - 0.0 - (0.3 * 2.0) = 0.4
// FoSp = Hc / reducedFall = 4.7596 / 0.4 = 11.899
// For calculation of Hc see TestCanCalculateHCritical
// See also "..\..\doc\Evaluation Piping\Nieuwe rekenregel bligh Sellmeijeruli.xls"
const double diff = 0.0001;
var designScenario = new DesignScenario();
designScenario.Location = new Location();
designScenario.RiverLevel = 1.0;
designScenario.ModelFactors.UpliftCriterionPiping = 1.0;
var location = new Location();
location.SurfaceLine = CreateSurfaceLineTutorial1();
var subSoilScenario = new SoilGeometryProbability();
subSoilScenario.SoilProfile1D = CreatePipingSellmeijerProfileWithOneSandlayer();
subSoilScenario.SegmentFailureMechanismType = FailureMechanismSystemType.Piping;
var damKernelInput = new DamKernelInput
{
DesignScenario = designScenario,
Location = location,
SubSoilScenario = subSoilScenario
};
var kernelWrapper = new DamPipingSellmeijer4ForcesKernelWrapper();
// Prepare the wrapper. Result is input for the calculation dll
IKernelDataInput damPipingInput;
kernelWrapper.Prepare(damKernelInput, out damPipingInput);
// Validate the input
List messages;
kernelWrapper.Validate(damPipingInput, out messages);
Assert.AreEqual(0, messages.Count);
// Run the dll
DamPipingSellmeijer4ForcesOutput output = (DamPipingSellmeijer4ForcesOutput) kernelWrapper.Execute(damPipingInput, out messages);
Assert.AreEqual(0, messages.Count);
Assert.AreEqual(11.899117458988471, output.FoSp, diff);
Assert.AreEqual(4.7596469835953883, output.Hc, diff);
// Fill the design results
DesignResult result;
kernelWrapper.PostProcess(damKernelInput, output, out result);
Assert.AreEqual(11.899117458988471, result.PipingDesignResults.Sellmeijer4ForcesFactor, diff);
Assert.AreEqual(4.7596469835953883, result.PipingDesignResults.Sellmeijer4ForcesHcritical, diff);
}
[Test]
public void TestPrepare()
{
const double diff = 0.0001;
var designScenario = new DesignScenario();
designScenario.Location = new Location();
designScenario.RiverLevel = 1.0;
designScenario.ModelFactors.UpliftCriterionPiping = 1.0;
var location = new Location();
location.SurfaceLine = CreateSurfaceLineTutorial1();
var subSoilScenario = new SoilGeometryProbability();
subSoilScenario.SoilProfile1D = CreatePipingSellmeijerProfileWithOneSandlayer();
subSoilScenario.SegmentFailureMechanismType = FailureMechanismSystemType.Piping;
var damKernelInput = new DamKernelInput
{
DesignScenario = designScenario,
Location = location,
SubSoilScenario = subSoilScenario
};
var kernelWrapper = new DamPipingSellmeijer4ForcesKernelWrapper();
IKernelDataInput kernelDataInput;
kernelWrapper.Prepare(damKernelInput, out kernelDataInput);
DamPipingSellmeijer4ForcesInput damPipingInput = (DamPipingSellmeijer4ForcesInput) kernelDataInput;
Assert.AreEqual(1.0, damPipingInput.HRiver, diff);
Assert.AreEqual(0.0, damPipingInput.HExit, diff);
Assert.AreEqual(0.3, damPipingInput.Rc, diff);
Assert.AreEqual(2.0, damPipingInput.DTotal, diff);
Assert.AreEqual(8.0, damPipingInput.AquiferHeight, diff);
Assert.AreEqual(40.5, damPipingInput.SeepageLength, diff);
Assert.AreEqual(200.0, damPipingInput.D70, diff);
Assert.AreEqual(0.25, damPipingInput.WhitesConstant, diff);
Assert.AreEqual(37.0, damPipingInput.BeddingAngle, diff);
Assert.AreEqual(1.33E-06, damPipingInput.WaterViscosity, diff);
Assert.AreEqual(0.0001, damPipingInput.PermeabilityKx, diff);
}
[Test]
public void TestValidate()
{
var kernelWrapper = new DamPipingSellmeijer4ForcesKernelWrapper();
// Validate without setting values. Expected error messages.
var damPipingInput = new DamPipingSellmeijer4ForcesInput();
List messages;
kernelWrapper.Validate(damPipingInput, out messages);
Assert.IsTrue(messages.Count > 0);
// Validate the input when valid input is provided. Expected no messages.
damPipingInput = new DamPipingSellmeijer4ForcesInput
{
HRiver = 1.0,
HExit = 0.0,
Rc = 0.3,
DTotal = 2.0,
AquiferHeight = 8.0,
SeepageLength = 40.5,
D70 = 200.0,
WhitesConstant = 0.25,
BeddingAngle = 37.0,
WaterViscosity = 1.33E-06,
PermeabilityKx = 0.0001
};
messages.Clear();
kernelWrapper.Validate(damPipingInput, out messages);
Assert.AreEqual(0, messages.Count);
}
[Test]
public void TestPostProcess()
{
var kernelWrapper = new DamPipingSellmeijer4ForcesKernelWrapper();
var input = new DamKernelInput
{
DesignScenario = new DesignScenario(),
Location = new Location(),
SubSoilScenario = new SoilGeometryProbability()
};
input.DesignScenario.Location = new Location();
DamPipingSellmeijer4ForcesOutput output = new DamPipingSellmeijer4ForcesOutput
{
FoSp = 1.1,
Hc = 2.2
};
DesignResult result;
kernelWrapper.PostProcess(input, output, out result);
Assert.AreEqual(output.FoSp, result.PipingDesignResults.Sellmeijer4ForcesFactor);
Assert.AreEqual(output.Hc, result.PipingDesignResults.Sellmeijer4ForcesHcritical);
}
[Test]
[ExpectedException(typeof(NoNullAllowedException), ExpectedMessage = "Geen invoer object gedefinieerd voor Sellmeijer 4 Krachten")]
[SetUICulture("nl-NL")]
public void TestLanguageNLThrowsExceptionInExecuteWhenInputIsNull()
{
var kernelWrapper = new DamPipingSellmeijer4ForcesKernelWrapper();
List messages;
kernelWrapper.Execute(null, out messages);
}
[Test]
[ExpectedException(typeof(NoNullAllowedException), ExpectedMessage = "No input object defined for Sellmeijer 4 Forces")]
[SetUICulture("en-US")]
public void TestLanguageENThrowsExceptionInExecuteWhenInputIsNull()
{
var kernelWrapper = new DamPipingSellmeijer4ForcesKernelWrapper();
List messages;
kernelWrapper.Execute(null, out messages);
}
[Test]
[ExpectedException(typeof(NoNullAllowedException), ExpectedMessage = "Geen uitvoer object gedefinieerd voor Sellmeijer 4 Krachten")]
[SetUICulture("nl-NL")]
public void TestThrowsExceptionInPostProcessWhenOutputIsNull()
{
var kernelWrapper = new DamPipingSellmeijer4ForcesKernelWrapper();
DesignResult result;
kernelWrapper.PostProcess(new DamKernelInput(), null, out result);
}
[Test]
[ExpectedException(typeof(NoNullAllowedException), ExpectedMessage = "Geen invoer object gedefinieerd voor Sellmeijer 4 Krachten")]
[SetUICulture("nl-NL")]
public void TestThrowsExceptionInPostProcessWhenInputIsNull()
{
var kernelWrapper = new DamPipingSellmeijer4ForcesKernelWrapper();
DesignResult result;
kernelWrapper.PostProcess(null, new DamPipingSellmeijer4ForcesOutput(), out result);
}
private static SoilProfile1D CreatePipingSellmeijerProfileWithOneSandlayer()
{
SoilProfile1D soilProfile1D = new SoilProfile1D();
SoilLayer1D soilLayer1D1 = new SoilLayer1D();
soilLayer1D1.Name = "L0";
soilLayer1D1.TopLevel = 10.0;
soilLayer1D1.Soil = new Soil("Topmaterial", 1.0, 1.0);
soilLayer1D1.Soil.PermeabKx = 0.0003;
soilLayer1D1.Soil.DiameterD70 = 0.0003;
soilLayer1D1.Soil.WhitesConstant = 0.5;
soilLayer1D1.Soil.BeddingAngle = 57.0;
soilLayer1D1.IsAquifer = false;
soilProfile1D.Layers.Add(soilLayer1D1);
SoilLayer1D soilLayer1D2 = new SoilLayer1D();
soilLayer1D2.Name = "L1";
soilLayer1D2.TopLevel = -2.0;
soilLayer1D2.Soil = new Soil("Sand", 22.0, 20.0);
soilLayer1D2.Soil.PermeabKx = 0.0001;
soilLayer1D2.Soil.DiameterD70 = 0.0002;
soilLayer1D2.Soil.WhitesConstant = 0.25;
soilLayer1D2.Soil.BeddingAngle = 37.0;
soilLayer1D2.IsAquifer = true;
soilProfile1D.Layers.Add(soilLayer1D2);
soilProfile1D.BottomLevel = -10.0;
return soilProfile1D;
}
private static SurfaceLine2 CreateSurfaceLineTutorial1(bool includingTraffic = false)
{
SurfaceLine2 surfaceLine2 = new SurfaceLine2();
surfaceLine2.Name = "Tutorial1";
surfaceLine2.Geometry = new GeometryPointString();
surfaceLine2.CharacteristicPoints.GeometryMustContainPoint = true;
SurfaceLine2 line = surfaceLine2;
line.EnsurePointOfType(0.0, 0.0, CharacteristicPointType.SurfaceLevelOutside);
line.EnsurePointOfType(10.0, 0.0, CharacteristicPointType.DikeToeAtRiver);
line.EnsurePointOfType(34.5, 5.0, CharacteristicPointType.DikeTopAtRiver);
if (includingTraffic)
{
line.EnsurePointOfType(35.0, 5.0, CharacteristicPointType.TrafficLoadOutside);
line.EnsurePointOfType(38.5, 5.0, CharacteristicPointType.TrafficLoadInside);
}
line.EnsurePointOfType(40.5, 5.0, CharacteristicPointType.DikeTopAtPolder);
line.EnsurePointOfType(50.5, 0.0, CharacteristicPointType.DikeToeAtPolder);
line.EnsurePointOfType(58.5, 0.0, CharacteristicPointType.DitchDikeSide);
line.EnsurePointOfType(59.5, -2.0, CharacteristicPointType.BottomDitchDikeSide);
line.EnsurePointOfType(61.5, -2.0, CharacteristicPointType.BottomDitchPolderSide);
line.EnsurePointOfType(61.5, 0.0, CharacteristicPointType.DitchPolderSide);
line.EnsurePointOfType(75.0, 0.0, CharacteristicPointType.SurfaceLevelInside);
line.Geometry.SyncCalcPoints();
return line;
}
}
}