[framework] outputformat = 1 # Model parameters and settings [model] AnnualDischarge=2290 # Alpha for wiver-width estimation 5 for mountain stream 60 for the river rhine Alpha=120 ModelSnow=1 ScalarInput=1 InputSeries=1 InterpolationMethod=inv Tslice=1 UpdMaxDist=300000.0 P_style = 1 L_IRURFR = 0 L_URFR = 0 L_FR = 0 maxTransitTime = 9 DistForcing = 3 maxGaugeId = 10 Ks = 0.0004 spinUp_time = 5 NSEbreak = 0 #W=wetland(0) H=hillslope(1) P=plateau(2) WD = drained wetland(3) classes = ['W','H'] timestepsecs = 3600 #selection of reservoir configuration - '0' means reservoir should not be modelled for this class selectSi = interception_overflow2, interception_overflow2 selectSu= unsatZone_LP_beta, unsatZone_LP_beta selectSus=None,None selectSf=fastRunoff_lag2, fastRunoff_lag2 selectSr=None,None #input time series Pfile_1 = intss\1_P.tss Efile_1 = intss\1_PET.tss Tfile_1 = intss\1_T.tss #Qfile_1 = D:/TEuser/Onderzoek/Promotie/modellen/OpenStreams/wflow/wflow_orientale_topoflex/intss/1_Qobs.tss #Pfile_2 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_rain_10H.tss #Efile_2 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_Ep_10H.tss #TDMfile_2 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_tempDMean_10H.tss #RNfile_2 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_radNet_10H.tss #RSfile_2 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_radSI_10H.tss #SGfile_2 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_sgamma_10H.tss #VPDfile_2 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_vpd_10H.tss #Wfile_2 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_wind_10H.tss #DSfile_2 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_dayS_10H.tss #DEfile_2 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_dayE_10H.tss #LAIfile_2 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_lai_10H.tss #rst_lai_0 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_rstMin_laiEff_W4.tss #rst_lai_1 = /u/euser/WFLOW/wflow/wflow_ourthe_testStructure/intss/2_rstMin_laiEff_HPPPA4.tss #wflow maps with percentages wflow_percent_0 = staticmaps/wflow_percentW4.map wflow_percent_1 = staticmaps/wflow_percentHPPPA4.map #constant model parameters - some are catchment dependent Ks = 0.0004 lamda = 2.45e6 Cp = 1.01e-3 rhoA = 1.29 rhoW = 1000 gamma = 0.066 JC_Topt = 301 #parameters for fluxes and storages sumax = [140, 300] beta = [0.1, 0.1] D = [0, 0.10] Kf = [0.1, 0.006] Tf = [1, 3] imax = [1.2, 2] perc = [0, 0.000] cap = [0.09, 0] LP = [0.5, 0.8] Ce = [1, 1] #Jarvis stressfunctions JC_D05 = [1.5,1.5] JC_cd1 = [3,3] JC_cd2 = [0.1,0.1] JC_cr = [100,100] JC_cuz = [0.07,0.07] SuFC = [0.98,0.98] SuWP = [0.1,0.1] JC_rstmin = [150,250] #parameters not used for this configuration samax = [0,0] famax = [0,0] sumin = [0,0] susmax1 = [0,0] susmax2 = [0,0] susmax3 = [0,0] srmax = [0,0] Co = [1,1] Kd = [0,0] Kr =[0,0] [layout] # if set to zero the cell-size is given in lat/long (the default) sizeinmetres = 0 [outputmaps] #self.Si_diff=sidiff #self.Pe=pe #self.Ei=Ei #self.Si=si #self.Qfin=Qfin #self.QfinLag=QfinLag #self.RunoffLaged=runlag #self.Su=Su #self.Qu=Qu #self.evaporation=act #self.Su_diff=sudiff # List all timeseries in tss format to save in this section. Timeseries are # produced per subcatchment. [outputtss] #stages self.Si[0]=SiW self.Si[1]=SiH self.Sf[1]=SfH self.Sf[0]=SfW self.Su[1]=SuH self.Su[0]=SuW #fluxen self.Precipitation=Prec self.Qu_[0]=QuW self.Qu_[1]=QuH self.Ei_[0]=EiW self.Ei_[1]=EiH self.Eu_[0]=EuW self.Eu_[1]=EuH self.Pe_[0]=peW self.Pe_[1]=peH self.Perc_[1]=PercH self.Cap_[0]=CapW self.Qf_[1] = QfH self.Qf_[0] = QfW self.Qfcub = Qfcub self.Qtlag = Qtlag #waterbalance # Variables to determine basic statistics for (and save to disk at the # and of the run. Note that the statistics are only calculated if # the -S command-line option is given. # THIS DOES NOT WORK YET. [statvariables] #self.FirstZoneDepth=fir