# -*- coding: utf-8 -*- """ Created on Mon Jun 18 14:42:47 2012 @author: schelle """ import numpy import matplotlib as mpl #mpl.use('Agg') import matplotlib.pyplot as plt import datetime import pandas import pcrut from stats import * Case = "rhine_sbm" #Case = "rhineNew" warmup = 500 # timesteps to skip in warmup phase for calculations cooldown = 50 location = 7 obs,head=pcrut.readtss(Case + "/calib_new.tss") obs = obs[1:3601,:] for location in range(0,14): sim,hd=pcrut.readtss(Case + "/newcalib/run.tss") #shift one day!!!! pers = numpy.size(obs,axis=0) a = get_nash_sutcliffe(obs[warmup:len(obs)-cooldown,location],sim[warmup:len(sim)-cooldown,location],NoData=numpy.nan) #trange = pandas.DatetimeIndex(datetime.datetime(1985,1,1),periods=pers,offset=pandas.DateOffset()) ts = pandas.Series(obs[:,location],index=pandas.date_range('1/1/1985',periods=pers)) tssim = pandas.Series(sim[:,location],index=pandas.date_range('1/1/1985',periods=pers)) plt.figure(location) plt.autoscale(enable=True) ts.plot(label='Observed',color='blue') plt.autoscale(enable=False) tssim.plot(label='Simulated',color='black') plt.title(head[location] + ": NS = " + str(a[0])) plt.legend()