// Copyright (C) Stichting Deltares 2024. All rights reserved.
//
// This file is part of the Dam Engine.
//
// The Dam Engine is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see .
//
// All names, logos, and references to "Deltares" are registered trademarks of
// Stichting Deltares and remain full property of Stichting Deltares at all times.
// All rights reserved.
using System;
using System.Collections.Generic;
using System.Linq;
using Deltares.DamEngine.Data.Standard;
namespace Deltares.DamEngine.Data.Geometry;
///
/// Type of intersection
///
public enum LineIntersection
{
///
/// The no intersection
///
NoIntersection = 0,
///
/// The intersects
///
Intersects = 1,
///
/// The parallel
///
Parallel = 2
}
///
/// Position of point towards polygon
///
public enum PointInPolygon
{
///
/// The inside polygon
///
InsidePolygon = 0,
///
/// The on polygon edge
///
OnPolygonEdge = 1,
///
/// The outside polygon
///
OutsidePolygon = 2
}
///
/// Enum for the clockwise options
///
public enum Clockwise
{
IsClockwise = 0,
AntiClockwise = 1,
NotEnoughUniquePoints = 2,
PointsOnLine = 3
}
///
/// Static class Routines2D
///
public static class Routines2D
{
private const double tolerance = 1.0e-4;
///
/// Checks if the 2D Lines strictly intersect. Strictly means that the intersection point must be part of both lines so
/// extrapolated points do not count.
///
/// The point1.
/// The point2.
/// The point3.
/// The point4.
/// The intersection point.
///
/// Intersection status as well as the intersection point (when found, else null)
///
///
/// For connected parallel lines, the connection point will be returned as valid intersection point.
///
public static LineIntersection DetermineIf2DLinesIntersectStrickly(Point2D point1, Point2D point2, Point2D point3,
Point2D point4, out Point2D intersectionPoint)
{
return DetermineIf2DLinesIntersectStrickly(point1, point2, point3, point4,
out intersectionPoint, tolerance);
}
///
/// Does the point exist in line (within the given tolerance).
///
/// The line point1.
/// The line point2.
/// The point.
/// The tolerance.
/// True when point is on line or equals a line point
public static bool DoesPointExistInLine(Point2D linePoint1, Point2D linePoint2, Point2D point, double tolerance)
{
// Function to find if lies on or close to a line (within a given tolerance)
// Input - a line defined by lTwo points, a third point to test and tolerance aValue
// Output - TRUE or FALSE
// first check whether the point is equal to a line point
if (linePoint1.LocationEquals(point, tolerance) || linePoint2.LocationEquals(point, tolerance))
{
return true;
}
double linePoint1X = linePoint1.X;
double linePoint1Z = linePoint1.Z;
double linePoint2X = linePoint2.X;
double linePoint2Z = linePoint2.Z;
double pointX = point.X;
double pointZ = point.Z;
// then check if point is within the bounding rectangle formed by 2 line points
double maxX = Math.Max(linePoint1X, linePoint2X);
double minX = Math.Min(linePoint1X, linePoint2X);
double maxY = Math.Max(linePoint1Z, linePoint2Z);
double minY = Math.Min(linePoint1Z, linePoint2Z);
minX -= tolerance;
minY -= tolerance;
maxX += tolerance;
maxY += tolerance;
double x3 = pointX;
double y3 = pointZ;
if (!(x3 > minX && x3 < maxX && y3 > minY && y3 < maxY))
{
return false;
}
// check if perpendicular distance between point and line is within tolerance
double a = linePoint1Z - linePoint2Z;
double b = linePoint2X - linePoint1X;
double c = -((a * linePoint1X) + (b * linePoint1Z));
double distance = ((a * x3) + (b * y3) + c) / Compute2DDistance(linePoint1X, linePoint1Z, linePoint2X, linePoint2Z);
return Math.Abs(distance) < tolerance;
}
///
/// To check if the points of the polygon are clock-wise
///
///
///
public static Clockwise IsClockWise(IEnumerable aPolygon)
{
Point2D[] distinctPoints = aPolygon.Distinct().ToArray();
if (distinctPoints.Length < 3)
{
return Clockwise.NotEnoughUniquePoints;
}
Point2D p0 = distinctPoints.First();
var realDistinctPoint = new Point2D[distinctPoints.Length];
realDistinctPoint[0] = p0;
var index = 1;
foreach (Point2D distinctPoint in distinctPoints)
{
if (distinctPoint != p0)
{
if (!distinctPoint.LocationEquals(p0))
{
realDistinctPoint[index] = distinctPoint;
index++;
}
}
}
if (index < 3)
{
return Clockwise.NotEnoughUniquePoints;
}
double sumClockwise = 0;
double clockwise;
for (var ii = 0; ii < distinctPoints.Length - 1; ii++)
{
clockwise = (distinctPoints[ii + 1].X - distinctPoints[ii].X) *
(distinctPoints[ii + 1].Z + distinctPoints[ii].Z);
sumClockwise += clockwise;
}
clockwise = (distinctPoints[0].X - distinctPoints[distinctPoints.Length - 1].X) *
(distinctPoints[0].Z + distinctPoints[distinctPoints.Length - 1].Z);
sumClockwise += clockwise;
int result = Math.Sign(sumClockwise);
if (result == 0)
{
return Clockwise.PointsOnLine;
}
return result > 0.0 ? Clockwise.IsClockwise : Clockwise.AntiClockwise;
}
///
/// Find if points Ax,ay are between a boundary polygon.
///
/// The polygon.
/// The x.
/// The z.
///
public static PointInPolygon CheckIfPointIsInPolygon(GeometryLoop polygon, double x, double z)
{
// This is done by calculating and adding the angles from the point to all points
// of the polygon (using the ArcTan2 function). If the sum of these angles is
// approximate zero the point lies outside the polygon.
// If the sum in approximate + or - 2Pi the point lies in the polygon;
// Performance tests have proven that this algorithm performs better than the
// polynomial winding number algorithm described at:
// http://geomalgorithms.com/a03-_inclusion.html
const double epsilon = 1e-10;
var result = PointInPolygon.OutsidePolygon;
// add the last point at the end, cos the polygon must be closed, so the last node equals the first
var pointAdded = false;
if (polygon.Points.Count > 0)
{
if (!polygon.Points[0].LocationEquals(polygon.Points[polygon.Points.Count - 1]))
{
polygon.Points.Add(polygon.Points[0]);
pointAdded = true;
}
}
if (polygon.Points.Count > 2)
{
double deltaX = polygon[0].X - x;
double deltaZ = polygon[0].Z - z;
double absX = Math.Abs(deltaX);
double absZ = Math.Abs(deltaZ);
if ((absX < epsilon) && (absZ < epsilon))
{
UndoAddIfNeeded(polygon, pointAdded);
return PointInPolygon.OnPolygonEdge;
}
double al1 = Math.Atan2(deltaZ, deltaX);
double som = 0;
var index = 1;
while (index < polygon.Points.Count)
{
if (polygon[index] != null)
{
deltaX = polygon[index].X - x;
deltaZ = polygon[index].Z - z;
absX = Math.Abs(deltaX);
absZ = Math.Abs(deltaZ);
if ((absX < epsilon) && (absZ < epsilon))
{
UndoAddIfNeeded(polygon, pointAdded);
return PointInPolygon.OnPolygonEdge;
}
double al2 = Math.Atan2(deltaZ, deltaX);
double al3 = al2 - al1;
if (al3 < -Math.PI)
{
al3 = al3 + (2.0 * Math.PI);
}
if (al3 > Math.PI)
{
al3 = al3 - (2.0 * Math.PI);
}
if (((Math.PI - al3) < epsilon) || ((Math.PI + al3) < epsilon))
{
UndoAddIfNeeded(polygon, pointAdded);
return PointInPolygon.OnPolygonEdge;
}
som = som + al3;
al1 = al2;
}
index++;
}
if ((som > (1.9 * Math.PI)) || (som < (-1.9 * Math.PI)))
{
result = PointInPolygon.InsidePolygon;
}
else
{
result = PointInPolygon.OutsidePolygon;
}
}
UndoAddIfNeeded(polygon, pointAdded);
return result;
}
///
/// Intersection of Circle and line
///
///
///
///
///
///
///
///
public static List IntersectCircleline(double aX, double aY, double aR, double aX1, double aX2, double aY1, double aY2)
{
// Solve by filling in parametric equation of line :
// X = x1 + u*(x2 - x1)
// Y = y1 + u*(y2 - y1)
// Compare it to that of a cricle:
// (X - xm)^2 + (Y - ym)^2 = r^2
// And check solve for parameter u in a quadratic equation.
// - no solutions => no intersections
// - one or two solutions => intersection when -eps <= u <= 1+eps.
// If (x1,y1) close to circle edge, return (x1,y1).
const double lAbcEps = 1E-8;
double lX1 = aX2 - aX1;
double lX2 = aX1 - aX;
double lY1 = aY2 - aY1;
double lY2 = aY1 - aY;
var result = new List();
if ((Math.Abs(lX1) > lAbcEps) || (Math.Abs(lY1) > lAbcEps))
{
double lA = lX1 * lX1 + lY1 * lY1;
double lB = 2 * (lX1 * lX2 + lY1 * lY2);
double lC = lX2 * lX2 + lY2 * lY2 - aR * aR;
double lD = lB * lB - 4 * lA * lC;
if (lD > lAbcEps)
{
double lU = (-lB + Math.Sqrt(lD)) / (2 * lA);
if ((lU >= -lAbcEps) && (lU <= (1.0 + lAbcEps)))
{
result.Add(new Point2D
{
X = aX1 + lU * lX1,
Z = aY1 + lU * lY1
});
}
lU = (-lB - Math.Sqrt(lD)) / (2 * lA);
if ((lU >= -lAbcEps) && (lU <= (1.0 + lAbcEps)))
{
result.Add(new Point2D
{
X = aX1 + lU * lX1,
Z = aY1 + lU * lY1
});
}
}
else if (Math.Abs(lD) <= lAbcEps)
{
double lU = (-lB) / (2 * lA);
if ((lU >= -lAbcEps) && (lU <= 1.0 + lAbcEps))
{
result.Add(new Point2D
{
X = aX1 + lU * lX1,
Z = aY1 + lU * lY1
});
}
}
}
else if (Math.Abs(Math.Pow(lX2, 2) + Math.Pow(lY2, 2) - Math.Pow(aR, 2)) < lAbcEps)
{
result.Add(new Point2D
{
X = aX1,
Z = aY1
});
}
return result;
}
///
/// Determines angle between 2 lines.
/// Clockwise Input: point1, commonpoint, point2, commonpoint, normalvect(ex [0,0,-1]), validate
///
///
///
///
///
///
public static double FindAngle(Point2D line1Point1, Point2D line1Point2, Point2D line2Point1,
Point2D line2Point2)
{
double x1 = line1Point2.X - line1Point1.X;
double z1 = line1Point2.Z - line1Point1.Z;
double x2 = line2Point2.X - line2Point1.X;
double z2 = line2Point2.Z - line2Point1.Z;
double angle1 = GeneralMathRoutines.RadianToDegree(Math.Atan2(z1, x1));
double angle2 = GeneralMathRoutines.RadianToDegree(Math.Atan2(z2, x2));
double angle = angle2 - angle1;
if (angle < 0)
{
angle += 360;
}
return angle;
}
///
/// Checks if values are equal
///
///
///
///
///
public static bool AreEqual(double x1, double x2, double tolerance)
{
return (Math.Abs(x1 - x2) < tolerance);
}
///
/// Determines the if 2D lines intersect using extrapolation when needed.
///
/// a point1.
/// a point2.
/// a point3.
/// a point4.
/// a intersection point.
///
public static LineIntersection DetermineIf2DLinesIntersectWithExtrapolation(Point2D aPoint1, Point2D aPoint2, Point2D aPoint3, Point2D aPoint4, out Point2D aIntersectionPoint)
{
LineConstant lLineConstant1 = CalculateNormalLineConstants(aPoint1, aPoint2);
LineConstant lLineConstant2 = CalculateNormalLineConstants(aPoint3, aPoint4);
LineIntersection lResult = DetermineIf2DLinesIntersectWithExtrapolation(lLineConstant1, lLineConstant2, out aIntersectionPoint);
return lResult;
}
///
/// Finds the Intersection Points for two given 2D Lines.
/// The intersection point does not need to be on either given line, extrapolation is used to find it beyond the length of the given lines.
/// Note that parallel lines never return an intersection point, not even when there two parallel lines are neatly connected.
///
///
///
///
///
public static LineIntersection DetermineIf2DLinesIntersectWithExtrapolation(LineConstant aLine1Constant, LineConstant aLine2Constant, out Point2D aIntersectionPoint)
{
aIntersectionPoint = new Point2D(0.0, 0.0);
double lA1 = aLine1Constant.X;
double lB1 = aLine1Constant.Y;
double lC1 = aLine1Constant.Z;
double lA2 = aLine2Constant.X;
double lB2 = aLine2Constant.Y;
double lC2 = aLine2Constant.Z;
if (AreLinesParallel(lA1, lA2, lB1, lB2, tolerance))
{
aIntersectionPoint = null;
return LineIntersection.Parallel;
}
double lX = (lB2 * lC1 - lB1 * lC2) / (lA1 * lB2 - lA2 * lB1);
double lY = (lC1 * lA2 - lC2 * lA1) / (lA2 * lB1 - lA1 * lB2);
aIntersectionPoint.X = lX;
aIntersectionPoint.Z = lY;
return LineIntersection.Intersects;
}
///
/// Checks if the points coincide
///
/// The point1 x.
/// The point1 z.
/// The point2 x.
/// The point2 z.
/// The tolerance.
/// true when points coincide
public static bool DetermineIfPointsCoincide(double point1X, double point1Z, double point2X, double point2Z, double tolerance)
{
if ((Math.Abs(point1X - point2X)) < tolerance && Math.Abs(point1Z - point2Z) < tolerance)
{
return true;
}
return false;
}
private static void UndoAddIfNeeded(GeometryLoop polygon, bool needed)
{
if (needed)
{
polygon.Points.Remove(polygon.Points[polygon.Points.Count - 1]);
}
}
///
/// Takes the cross product of two vectors
///
/// X-coordinate of the first point
/// Y-coordinate of the first point
/// X-coordinate of the second point
/// Y-coordinate of the second point
///
private static double CrossProduct(double pointAx, double pointAy, double pointBx, double pointBy)
{
return pointAx * pointBy - pointBx * pointAy;
}
///
/// Description: Finds the Normal. FPoint1 and FPoint2 are the line coordinates
///
/// The point1.
/// The point2.
///
private static LineConstant CalculateNormalLineConstants(Point2D point1, Point2D point2)
{
double point1X = point1.X;
double point1Z = point1.Z;
double point2X = point2.X;
double point2Z = point2.Z;
var lLineConstant = new LineConstant
{
X = point2Z - point1Z,
Y = -(point2X - point1X),
Z = (point2Z - point1Z) * point1X - (point2X - point1X) * point1Z
};
return lLineConstant;
}
///
/// Checks if lTwo lines are parallel. The Normal Line Constants are required.
///
/// a line1 constant x.
/// a line1 constant y.
/// a line2 constant x.
/// a line2 constant y.
/// The tolerance.
///
private static bool AreLinesParallel(double aLine1ConstantX, double aLine1ConstantY, double aLine2ConstantX, double aLine2ConstantY, double tolerance)
{
return Math.Abs(CrossProduct(aLine1ConstantX, aLine2ConstantX, aLine1ConstantY, aLine2ConstantY)) < tolerance;
}
///
/// Calculates the Euclidean distance between two points on a 2-dimensional plane
///
/// X-coordinate of the first point
/// Y-coordinate of the first point
/// X-coordinate of the second point
/// Y-coordinate of the second point
/// The distance between the given points.
public static double Compute2DDistance(double aX1, double aY1, double aX2, double aY2)
{
double lX = aX1 - aX2;
double lY = aY1 - aY2;
return Math.Sqrt(lX * lX + lY * lY);
}
///
/// Checks if the 2D Lines strictly intersect. Strictly means that the intersection point must be part of both lines so
/// extrapolated points do not count.
///
/// The point1.
/// The point2.
/// The point3.
/// The point4.
/// The intersection point.
/// Non-inclusive maximum allowed distance between two possibly intersecting endpoints of the lines
///
/// Intersection status as well as the intersection point (when found, else null)
///
///
/// For connected parallel lines, the connection point will be returned as valid intersection point.
///
private static LineIntersection DetermineIf2DLinesIntersectStrickly(Point2D point1, Point2D point2, Point2D point3,
Point2D point4, out Point2D intersectionPoint, double tolerance)
{
double point1X = point1.X;
double point1Z = point1.Z;
double point2X = point2.X;
double point2Z = point2.Z;
double point3X = point3.X;
double point3Z = point3.Z;
double point4X = point4.X;
double point4Z = point4.Z;
LineConstant lineConstant1 = CalculateNormalLineConstants(point1, point2);
LineConstant lineConstant2 = CalculateNormalLineConstants(point3, point4);
LineIntersection result = DetermineIf2DLinesIntersectWithExtrapolation(lineConstant1, lineConstant2, out intersectionPoint);
if (result == LineIntersection.Intersects)
{
//check if lies on the line and is not somewhere outside !
if (!(DoesPointExistInLine(point1, point2, intersectionPoint, tolerance) &&
DoesPointExistInLine(point3, point4, intersectionPoint, tolerance)))
{
intersectionPoint = null;
result = LineIntersection.NoIntersection;
}
}
else
{
if (result == LineIntersection.Parallel && !DoLinesAtLeastPartialyOverlap(point1X, point1Z, point2X, point2Z, point3X, point3Z,
point4X, point4Z, tolerance))
{
if (DetermineIfPointsCoincide(point1X, point1Z, point3X, point3Z, tolerance) ||
DetermineIfPointsCoincide(point1X, point1Z, point4X, point4Z, tolerance))
{
intersectionPoint = new Point2D(point1X, point1Z);
result = LineIntersection.Intersects;
}
if (DetermineIfPointsCoincide(point2X, point2Z, point3X, point3Z, tolerance) ||
DetermineIfPointsCoincide(point2X, point2Z, point4X, point4Z, tolerance))
{
intersectionPoint = new Point2D(point2X, point2Z);
result = LineIntersection.Intersects;
}
}
}
return result;
}
///
/// Determines whether the given lines at least partialy overlap.
/// Note that purely connected parallel lines are NOT considered to be overlapping.
///
/// The point1 x.
/// The point1 z.
/// The point2 x.
/// The point2 z.
/// The point3 x.
/// The point3 z.
/// The point4 x.
/// The point4 z.
/// The tolerance.
///
private static bool DoLinesAtLeastPartialyOverlap(double point1X, double point1Z, double point2X, double point2Z,
double point3X, double point3Z, double point4X, double point4Z, double tolerance)
{
bool result = AreLinesParallel(point1X, point1Z, point2X, point2Z, point3X, point3Z, point4X, point4Z, tolerance);
// lines not parallel so can not overlap
if (!result)
{
return false;
}
if (Math.Abs(point1X - point2X) < double.Epsilon)
{
// lines are vertical so check Y values
double max12 = Math.Max(point1Z, point2Z);
double min12 = Math.Min(point1Z, point2Z);
double max34 = Math.Max(point3Z, point4Z);
double min34 = Math.Min(point3Z, point4Z);
// When max of point1/point2 does not exceed min of point3/point4 lines do not overlap
// When max of point3/point4 does not exceed min of point1/point2 lines do not overlap
if (max12 <= min34 || min12 >= max34)
{
result = false;
}
}
else
{
// lines are not vertical so check X values
double max12 = Math.Max(point1X, point2X);
double min12 = Math.Min(point1X, point2X);
double max34 = Math.Max(point3X, point4X);
double min34 = Math.Min(point3X, point4X);
if (max12 <= min34 || min12 >= max34)
{
result = false;
}
}
return result;
}
///
/// Description: Checks if two lines are parallel within the given tolerance
///
/// The point1 x.
/// The point1 z.
/// The point2 x.
/// The point2 z.
/// The point3 x.
/// The point3 z.
/// The point4 x.
/// The point4 z.
/// The tolerance.
///
/// True when parallel
///
private static bool AreLinesParallel(double point1X, double point1Z, double point2X, double point2Z,
double point3X, double point3Z, double point4X, double point4Z, double tolerance)
{
double aX = point2X - point1X;
double aY = point2Z - point1Z;
double bX = point4X - point3X;
double bY = point4Z - point3Z;
Normalize(ref aX, ref aY);
Normalize(ref bX, ref bY);
return AreLinesParallel(aX, aY, bX, bY, tolerance);
}
///
/// Normalizes this instance.
///
private static void Normalize(ref double pointX, ref double pointY)
{
double q = Math.Sqrt(pointX * pointX + pointY * pointY);
if (!q.AlmostEquals(0, 1e-8))
{
pointX = pointX / q;
pointY = pointY / q;
}
}
///
/// Structure for line constant in 3D
///
public struct LineConstant
{
public double X { get; set; }
public double Y { get; set; }
public double Z { get; set; }
}
///
/// Calculates the distance between a point and a line segment.
///
///
///
///
///
///
///
///
public static double CalculateDistanceToLine(
double pointX,
double pointY,
double lineStartX,
double lineStartY,
double lineEndX,
double lineEndY)
{
return Math.Sqrt(CalculateSquaredDistance(new Point2D(pointX, pointY), new Point2D(lineStartX, lineStartY),
new Point2D(lineEndX, lineEndY)));
}
private static double CalculateSquaredDistance(Point2D point, Point2D lineStart, Point2D lineEnd)
{
Point2D distanceVectorLineStartToEnd = lineEnd - lineStart;
Point2D distanceVectorLineStartToPoint = point - lineStart;
double DotProduct(Point2D first, Point2D second) => first.X * second.X + first.Z * second.Z;
double dotProductLineStartAndEnd = DotProduct(distanceVectorLineStartToPoint, distanceVectorLineStartToEnd );
double dotProductPointAndLineStart = DotProduct(distanceVectorLineStartToEnd , distanceVectorLineStartToEnd );
Point2D point2D3;
if (dotProductLineStartAndEnd <= 0.0)
point2D3 = point - lineStart;
else if (dotProductPointAndLineStart <= dotProductLineStartAndEnd)
{
point2D3 = point - lineEnd;
}
else
{
double vectorToClosestPointOnLine = dotProductLineStartAndEnd / dotProductPointAndLineStart;
Point2D point2D4 = lineStart + vectorToClosestPointOnLine * distanceVectorLineStartToEnd ;
point2D3 = point - point2D4;
}
return DotProduct(point2D3, point2D3);
}
}