// Copyright (C) Stichting Deltares 2017. All rights reserved. // // This file is part of Ringtoets. // // Ringtoets is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // All names, logos, and references to "Deltares" are registered trademarks of // Stichting Deltares and remain full property of Stichting Deltares at all times. // All rights reserved. using System; using System.Drawing; using Core.Common.Base.Data; using Ringtoets.Common.Data.Probabilistics; namespace Ringtoets.Piping.Primitives { /// /// This class represents profiles that were imported from D-Soil Model and will later on be used to create the /// necessary input for executing a piping calculation. /// public class PipingSoilLayer { private readonly LogNormalDistribution belowPhreaticLevel; private readonly VariationCoefficientLogNormalDistribution diameterD70; private readonly VariationCoefficientLogNormalDistribution permeability; private string materialName; /// /// Creates a new instance of , where the top is set to . /// /// The top level of the layer. public PipingSoilLayer(double top) { Top = top; MaterialName = string.Empty; belowPhreaticLevel = new LogNormalDistribution(2) { Mean = RoundedDouble.NaN, StandardDeviation = RoundedDouble.NaN, Shift = RoundedDouble.NaN }; diameterD70 = new VariationCoefficientLogNormalDistribution(6) { Mean = RoundedDouble.NaN, CoefficientOfVariation = RoundedDouble.NaN }; permeability = new VariationCoefficientLogNormalDistribution(6) { Mean = RoundedDouble.NaN, CoefficientOfVariation = RoundedDouble.NaN }; } /// /// Gets the top level of the . /// public double Top { get; } /// /// Gets or sets a value indicating whether the is an aquifer. /// public bool IsAquifer { get; set; } /// /// Gets or sets the distribution for the volumic weight of the below the phreatic level. /// [kN/m³] /// public LogNormalDistribution BelowPhreaticLevel { get { return belowPhreaticLevel; } set { belowPhreaticLevel.Mean = value.Mean; belowPhreaticLevel.StandardDeviation = value.StandardDeviation; belowPhreaticLevel.Shift = value.Shift; } } /// /// Gets or sets the distribution for the mean diameter of small scale tests applied to different kinds of sand, /// on which the formula of Sellmeijer has been fit. /// [m] /// public VariationCoefficientLogNormalDistribution DiameterD70 { get { return diameterD70; } set { diameterD70.Mean = value.Mean; diameterD70.CoefficientOfVariation = value.CoefficientOfVariation; } } /// /// Gets or sets the distribution for the Darcy-speed with which water flows through the aquifer layer. /// [m/s] /// public VariationCoefficientLogNormalDistribution Permeability { get { return permeability; } set { permeability.Mean = value.Mean; permeability.CoefficientOfVariation = value.CoefficientOfVariation; } } /// /// Gets or sets the name of the material that was assigned to the . /// /// Thrown when is null. public string MaterialName { get { return materialName; } set { if (value == null) { throw new ArgumentNullException(nameof(value)); } materialName = value; } } /// /// Gets or sets the that was used to represent the . /// public Color Color { get; set; } public override bool Equals(object obj) { if (ReferenceEquals(null, obj)) { return false; } if (ReferenceEquals(this, obj)) { return true; } if (GetType() != obj.GetType()) { return false; } return Equals((PipingSoilLayer) obj); } public override int GetHashCode() { unchecked { int hashCode = Top.GetHashCode(); hashCode = (hashCode * 397) ^ BelowPhreaticLevel.GetHashCode(); hashCode = (hashCode * 397) ^ DiameterD70.GetHashCode(); hashCode = (hashCode * 397) ^ Permeability.GetHashCode(); return hashCode; } } private bool Equals(PipingSoilLayer other) { return string.Equals(materialName, other.materialName) && Top.Equals(other.Top) && IsAquifer == other.IsAquifer && BelowPhreaticLevel.Equals(other.BelowPhreaticLevel) && DiameterD70.Equals(other.DiameterD70) && Permeability.Equals(other.Permeability) && Color.ToArgb().Equals(other.Color.ToArgb()); } } }