// Copyright (C) Stichting Deltares 2017. All rights reserved.
//
// This file is part of Ringtoets.
//
// Ringtoets is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// All names, logos, and references to "Deltares" are registered trademarks of
// Stichting Deltares and remain full property of Stichting Deltares at all times.
// All rights reserved.
using System;
using System.Drawing;
using Core.Common.Base.Data;
using Ringtoets.Common.Data.Probabilistics;
namespace Ringtoets.Piping.Primitives
{
///
/// This class represents profiles that were imported from D-Soil Model and will later on be used to create the
/// necessary input for executing a piping calculation.
///
public class PipingSoilLayer
{
private readonly LogNormalDistribution belowPhreaticLevel;
private readonly VariationCoefficientLogNormalDistribution diameterD70;
private readonly VariationCoefficientLogNormalDistribution permeability;
private string materialName;
///
/// Creates a new instance of , where the top is set to .
///
/// The top level of the layer.
public PipingSoilLayer(double top)
{
Top = top;
MaterialName = string.Empty;
belowPhreaticLevel = new LogNormalDistribution(2)
{
Mean = RoundedDouble.NaN,
StandardDeviation = RoundedDouble.NaN,
Shift = RoundedDouble.NaN
};
diameterD70 = new VariationCoefficientLogNormalDistribution(6)
{
Mean = RoundedDouble.NaN,
CoefficientOfVariation = RoundedDouble.NaN
};
permeability = new VariationCoefficientLogNormalDistribution(6)
{
Mean = RoundedDouble.NaN,
CoefficientOfVariation = RoundedDouble.NaN
};
}
///
/// Gets the top level of the .
///
public double Top { get; }
///
/// Gets or sets a value indicating whether the is an aquifer.
///
public bool IsAquifer { get; set; }
///
/// Gets or sets the distribution for the volumic weight of the below the phreatic level.
/// [kN/m³]
///
public LogNormalDistribution BelowPhreaticLevel
{
get
{
return belowPhreaticLevel;
}
set
{
belowPhreaticLevel.Mean = value.Mean;
belowPhreaticLevel.StandardDeviation = value.StandardDeviation;
belowPhreaticLevel.Shift = value.Shift;
}
}
///
/// Gets or sets the distribution for the mean diameter of small scale tests applied to different kinds of sand,
/// on which the formula of Sellmeijer has been fit.
/// [m]
///
public VariationCoefficientLogNormalDistribution DiameterD70
{
get
{
return diameterD70;
}
set
{
diameterD70.Mean = value.Mean;
diameterD70.CoefficientOfVariation = value.CoefficientOfVariation;
}
}
///
/// Gets or sets the distribution for the Darcy-speed with which water flows through the aquifer layer.
/// [m/s]
///
public VariationCoefficientLogNormalDistribution Permeability
{
get
{
return permeability;
}
set
{
permeability.Mean = value.Mean;
permeability.CoefficientOfVariation = value.CoefficientOfVariation;
}
}
///
/// Gets or sets the name of the material that was assigned to the .
///
/// Thrown when is null.
public string MaterialName
{
get
{
return materialName;
}
set
{
if (value == null)
{
throw new ArgumentNullException(nameof(value));
}
materialName = value;
}
}
///
/// Gets or sets the that was used to represent the .
///
public Color Color { get; set; }
public override bool Equals(object obj)
{
if (ReferenceEquals(null, obj))
{
return false;
}
if (ReferenceEquals(this, obj))
{
return true;
}
if (GetType() != obj.GetType())
{
return false;
}
return Equals((PipingSoilLayer) obj);
}
public override int GetHashCode()
{
unchecked
{
int hashCode = Top.GetHashCode();
hashCode = (hashCode * 397) ^ BelowPhreaticLevel.GetHashCode();
hashCode = (hashCode * 397) ^ DiameterD70.GetHashCode();
hashCode = (hashCode * 397) ^ Permeability.GetHashCode();
return hashCode;
}
}
private bool Equals(PipingSoilLayer other)
{
return string.Equals(materialName, other.materialName)
&& Top.Equals(other.Top)
&& IsAquifer == other.IsAquifer
&& BelowPhreaticLevel.Equals(other.BelowPhreaticLevel)
&& DiameterD70.Equals(other.DiameterD70)
&& Permeability.Equals(other.Permeability)
&& Color.ToArgb().Equals(other.Color.ToArgb());
}
}
}