# -*- coding: utf-8 -*- """ Created on Wed Feb 04 14:52:30 2015 @author: teuser """ # -*- coding: utf-8 -*- """ Created on Thu Apr 03 16:31:35 2014 @author: TEuser List all function versions """ import numpy from copy import copy as copylist try: from wflow.wf_DynamicFramework import * except ImportError: from wf_DynamicFramework import * import scipy import JarvisCoefficients def selectSaR(i): """ not all functions are still in this file, the older functions can be found (with the same numbering) in h:\My Documents\memo's\python scripts\wflow\ """ if i == 1: name = 'agriZone_Jarvis' elif i == 2: name = 'agriZone_Ep' elif i == 3: name = 'agriZone_Ep_Sa' elif i == 4: name = 'agriZone_Ep_Sa_cropG' elif i == 5: name = 'agriZone_Ep_Sa_cropG_beta' elif i == 6: name = 'agriZone_Ep_Sa_beta' elif i == 7: name = 'agriZone_Ep_Sa_beta_frost' elif i == 8: name = 'agriZone_Ep_Sa_beta_Fvar' elif i == 9: name = 'agriZone_hourlyEp_Sa_beta_Fvar' elif i == 10: name = 'agriZone_hourlyEp_Sa_beta_frost' elif i == 11: name = 'agriZone_hourlyEp_Sa_beta_frostSamax' return name def agriZone_no_reservoir(self, k): """ This function is used when no unsaturated zone reservoir is used and only passes fluxes from the upper reservoirs to the lower self.Qa_[k] = 0. self.Ea_[k] = 0. self.Sa[k] = 0. self.Fa_[k] = Pe Storage in unsaturated zone = 0. """ self.Qa_[k] = 0. self.Ea_[k] = 0. self.Sa[k] = 0. self.Fa_[k] = max(self.Pe_[k], 0) self.wbSa_[k] = self.Pe_[k] - self.Ea_[k] - self.Qa_[k] - self.Fa_[k] - self.Sa[k] + self.Sa_t[k] def agriZone_Jarvis(self,k): """ - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation based on Jarvis stress functions - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato --> Eu is no longer taken into account for this correction - Qa u is determined from overflow from Sa - Code for ini-file: 1 """ self.Qa = max(self.Pe - (self.samax[k] - self.Sa_t[k]),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qa) self.SaN = self.Sa[k] / self.samax[k] self.SuN = self.Su[k] / self.sumax[k] JarvisCoefficients.calcEu(self,k,1) #calculation of Ea based on Jarvis stress functions self.Ea1 = self.Eu self.Fa1 = self.Fmin[k] + (self.Fmax[k] - self.Fmin[k]) * e ** (-self.decF[k] * self.SuN) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qa) - self.Fa1 - self.Ea1 self.Sa_diff = ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Fa = self.Fa1 + (self.Fa1/ifthenelse(self.Fa1 + self.Ea1 > 0 , self.Fa1 + self.Ea1 , 1)) * self.Sa_diff self.Ea = self.Ea1 + (self.Ea1/ifthenelse(self.Fa1 + self.Ea1 > 0 , self.Fa1 + self.Ea1 , 1)) * self.Sa_diff self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qa) - self.Ea - self.Fa self.Sa[k] = ifthenelse(self.Sa[k] < 0, 0 , self.Sa[k]) self.Sa_diff2 = ifthen(self.Sa[k] < 0, self.Sa[k]) self.wbSa_[k] = self.Pe - self.Ea - self.Qa - self.Fa - self.Sa[k] + self.Sa_t[k] self.Ea_[k] = self.Ea self.Qa_[k] = self.Qa self.Fa_[k] = self.Fa def agriZone_Ep(self,k): """ - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation based on LP - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato --> Eu is no longer taken into account for this correction - Qa u is determined from overflow from Sa - Code for ini-file: 2 """ JarvisCoefficients.calcEp(self,k) self.PotEvaporation = self.EpHour self.Qa = max(self.Pe - (self.samax[k] - self.Sa_t[k]),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qa) self.SaN = self.Sa[k] / self.samax[k] self.SuN = self.Su[k] / self.sumax[k] self.Ea1 = max((self.PotEvaporation - self.Ei),0) * min(self.Sa[k] / (self.samax[k] * self.LP[k]),1) self.Fa1 = self.Fmin[k] + (self.Fmax[k] - self.Fmin[k]) * e ** (-self.decF[k] * self.SuN) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qa) - self.Fa1 - self.Ea1 self.Sa_diff = ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Fa = self.Fa1 + (self.Fa1/ifthenelse(self.Fa1 + self.Ea1 > 0 , self.Fa1 + self.Ea1 , 1)) * self.Sa_diff self.Ea = self.Ea1 + (self.Ea1/ifthenelse(self.Fa1 + self.Ea1 > 0 , self.Fa1 + self.Ea1 , 1)) * self.Sa_diff self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qa) - self.Ea - self.Fa self.Sa[k] = ifthenelse(self.Sa[k] < 0, 0 , self.Sa[k]) self.Sa_diff2 = ifthen(self.Sa[k] < 0, self.Sa[k]) self.wbSa_[k] = self.Pe - self.Ea - self.Qa - self.Fa - self.Sa[k] + self.Sa_t[k] self.Ea_[k] = self.Ea self.Qa_[k] = self.Qa self.Fa_[k] = self.Fa def agriZone_Ep_Sa(self,k): """ - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation based on LP - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato --> Eu is no longer taken into account for this correction - Qa u is determined from overflow from Sa - Fa is based on storage in Sa - Code for ini-file: 3 """ JarvisCoefficients.calcEp(self,k) self.PotEvaporation = self.EpHour self.Qa = max(self.Pe - (self.samax[k] - self.Sa_t[k]),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qa) self.SaN = self.Sa[k] / self.samax[k] self.SuN = self.Su[k] / self.sumax[k] self.Ea1 = max((self.PotEvaporation - self.Ei),0) * min(self.Sa[k] / (self.samax[k] * self.LP[k]),1) self.Fa1 = ifthenelse(self.SaN > 0,self.Fmin[k] + (self.Fmax[k] - self.Fmin[k]) * e ** (-self.decF[k] * (1 - self.SaN)),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qa) - self.Fa1 - self.Ea1 self.Sa_diff = ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Fa = self.Fa1 + (self.Fa1/ifthenelse(self.Fa1 + self.Ea1 > 0 , self.Fa1 + self.Ea1 , 1)) * self.Sa_diff self.Ea = self.Ea1 + (self.Ea1/ifthenelse(self.Fa1 + self.Ea1 > 0 , self.Fa1 + self.Ea1 , 1)) * self.Sa_diff self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qa) - self.Ea - self.Fa self.Sa[k] = ifthenelse(self.Sa[k] < 0, 0 , self.Sa[k]) self.Sa_diff2 = ifthen(self.Sa[k] < 0, self.Sa[k]) self.wbSa_[k] = self.Pe - self.Ea - self.Qa - self.Fa - self.Sa[k] + self.Sa_t[k] self.Ea_[k] = self.Ea self.Qa_[k] = self.Qa self.Fa_[k] = self.Fa def agriZone_Ep_Sa_cropG(self,k): """ - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation based on LP - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato --> Eu is no longer taken into account for this correction - Qa u is determined from overflow from Sa - Fa is based on storage in Sa - Code for ini-file: 4 """ JarvisCoefficients.calcEp(self,k) self.PotEvaporation = self.EpHour self.samax2 = self.samax[k] * self.cropG self.Qaadd = max(self.Sa_t[k] - self.samax2,0) self.Qa = max(self.Pe - (self.samax2 - self.Sa_t[k]),0) + self.Qaadd self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qa) self.SaN = self.Sa[k] / self.samax2 self.SuN = self.Su[k] / self.sumax[k] self.Ea1 = max((self.PotEvaporation - self.Ei),0) * min(self.Sa[k] / (self.samax2 * self.LP[k]),1) self.Fa1 = ifthenelse(self.SaN > 0,self.Fmin[k] + (self.Fmax[k] - self.Fmin[k]) * e ** (-self.decF[k] * (1 - self.SaN)),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qa) - self.Fa1 - self.Ea1 self.Sa_diff = ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Fa = self.Fa1 + (self.Fa1/ifthenelse(self.Fa1 + self.Ea1 > 0 , self.Fa1 + self.Ea1 , 1)) * self.Sa_diff self.Ea = self.Ea1 + (self.Ea1/ifthenelse(self.Fa1 + self.Ea1 > 0 , self.Fa1 + self.Ea1 , 1)) * self.Sa_diff self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qa) - self.Ea - self.Fa self.Sa[k] = ifthenelse(self.Sa[k] < 0, 0 , self.Sa[k]) self.Sa_diff2 = ifthen(self.Sa[k] < 0, self.Sa[k]) self.wbSa_[k] = self.Pe - self.Ea - self.Qa - self.Fa - self.Sa[k] + self.Sa_t[k] self.Ea_[k] = self.Ea self.Qa_[k] = self.Qa self.Fa_[k] = self.Fa def agriZone_Ep_Sa_cropG_beta(self,k): """ - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation based on LP - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato --> Eu is no longer taken into account for this correction - Qa u is determined from overflow from Sa --> incorporation of beta function - Fa is based on storage in Sa - Code for ini-file: 5 """ JarvisCoefficients.calcEp(self,k) self.PotEvaporation = self.EpHour self.samax2 = self.samax[k] * self.cropG self.Qaadd = max(self.Sa_t[k] + self.Pe - self.samax2,0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) self.SaN = self.Sa[k] / self.samax2 self.SuN = self.Su[k] / self.sumax[k] self.Ea1 = max((self.PotEvaporation - self.Ei),0) * min(self.Sa[k] / (self.samax2 * self.LP[k]),1) self.Qa1 = (self.Pe - self.Qaadd) * (1 - (1 - self.SaN) ** self.beta[k]) self.Fa1 = ifthenelse(self.SaN > 0,self.Fmin[k] + (self.Fmax[k] - self.Fmin[k]) * e ** (-self.decF[k] * (1 - self.SaN)),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Qa1 - self.Fa1 - self.Ea1 self.Sa_diff = ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Qa = self.Qa1 + (self.Qa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0 , self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Fa = self.Fa1 + (self.Fa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0 , self.Fa1 + self.Ea1 + self.Qa1 , 1)) * self.Sa_diff self.Ea = self.Ea1 + (self.Ea1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0 , self.Fa1 + self.Ea1 + self.Qa1 , 1)) * self.Sa_diff self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Ea - self.Fa - self.Qa self.Sa[k] = ifthenelse(self.Sa[k] < 0, 0 , self.Sa[k]) self.Sa_diff2 = ifthen(self.Sa[k] < 0, self.Sa[k]) self.wbSa_[k] = self.Pe - self.Ea - self.Qa - self.Qaadd - self.Fa - self.Sa[k] + self.Sa_t[k] self.Ea_[k] = self.Ea self.Qa_[k] = self.Qa + self.Qaadd self.Fa_[k] = self.Fa def agriZone_Ep_Sa_beta(self,k): """ - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation based on LP - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato --> Eu is no longer taken into account for this correction - Qa u is determined from overflow from Sa --> incorporation of beta function - Fa is based on storage in Sa - Code for ini-file: 6 """ JarvisCoefficients.calcEp(self,k) self.PotEvaporation = cover(ifthenelse(self.EpHour >= 0, self.EpHour, 0),0) self.samax2 = self.samax[k] * scalar(self.TopoId) self.Qaadd = max(self.Sa_t[k] + self.Pe - self.samax2,0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) self.SaN = self.Sa[k] / self.samax2 self.SuN = self.Su[k] / self.sumax[k] self.Ea1 = max((self.PotEvaporation - self.Ei),0) * min(self.Sa[k] / (self.samax2 * self.LP[k]),1) self.Qa1 = (self.Pe - self.Qaadd) * (1 - (1 - self.SaN) ** self.beta[k]) self.Fa1 = ifthenelse(self.SaN > 0,self.Fmin[k] + (self.Fmax[k] - self.Fmin[k]) * e ** (-self.decF[k] * (1 - self.SaN)),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Qa1 - self.Fa1 - self.Ea1 self.Sa_diff = ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Qa = self.Qa1 + (self.Qa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0 , self.Fa1 + self.Ea1 + self.Qa1 , 1)) * self.Sa_diff self.Fa = self.Fa1 + (self.Fa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0 , self.Fa1 + self.Ea1 + self.Qa1 , 1)) * self.Sa_diff self.Ea = self.Ea1 + (self.Ea1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0 , self.Fa1 + self.Ea1 + self.Qa1 , 1)) * self.Sa_diff self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Ea - self.Fa - self.Qa self.Sa[k] = ifthenelse(self.Sa[k] < 0, 0 , self.Sa[k]) self.Sa_diff2 = ifthen(self.Sa[k] < 0, self.Sa[k]) self.wbSa_[k] = self.Pe - self.Ea - self.Qa - self.Qaadd - self.Fa - self.Sa[k] + self.Sa_t[k] self.Ea_[k] = self.Ea self.Qa_[k] = self.Qa + self.Qaadd self.Fa_[k] = self.Fa def agriZone_Ep_Sa_beta_frost(self,k): """ - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation based on LP - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato --> Eu is no longer taken into account for this correction - Qa u is determined from overflow from Sa --> incorporation of beta function - Fa is based on storage in Sa - Fa is decreased in case of frozen soil - Code for ini-file: 7 """ JarvisCoefficients.calcEp(self,k) self.PotEvaporation = self.EpHour self.samax2 = self.samax[k] * scalar(self.TopoId) self.Qaadd = max(self.Sa_t[k] + self.Pe - self.samax2,0) self.FrDur[k] = min(self.FrDur[k] + (self.Tmean - 273.15) / 86400 * self.timestepsecs * self.dayDeg[k], 0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) self.SaN = self.Sa[k] / self.samax2 self.SuN = self.Su[k] / self.sumax[k] self.Ea1 = max((self.PotEvaporation - self.Ei),0) * min(self.Sa[k] / (self.samax2 * self.LP[k]),1) self.Qa1 = (self.Pe - self.Qaadd) * (1 - (1 - self.SaN) ** self.beta[k]) self.Ft = min(max(self.FrDur[k] / (self.FrDur1[k] - self.FrDur0[k]) - self.FrDur0[k] / (self.FrDur1[k] - self.FrDur0[k]), 0), 1) self.Fa1 = self.Ft * ifthenelse(self.SaN > 0,self.Fmin[k] + (self.Fmax[k] - self.Fmin[k]) * e ** (-self.decF[k] * (1 - self.SaN)),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Qa1 - self.Fa1 - self.Ea1 self.Sa_diff = ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Qa = self.Qa1 + (self.Qa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0, self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Fa = self.Fa1 + (self.Fa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0, self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Ea = self.Ea1 + (self.Ea1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0, self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Ea - self.Fa - self.Qa self.Sa[k] = ifthenelse(self.Sa[k] < 0, 0 , self.Sa[k]) self.Sa_diff2 = ifthen(self.Sa[k] < 0, self.Sa[k]) self.wbSa_[k] = self.Pe - self.Ea - self.Qa - self.Qaadd - self.Fa - self.Sa[k] + self.Sa_t[k] self.Ea_[k] = self.Ea self.Qa_[k] = self.Qa + self.Qaadd self.Fa_[k] = self.Fa self.Ft_[k] = self.Ft def agriZone_hourlyEp_Sa_beta_frost(self,k): """ - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation based on LP - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato --> Eu is no longer taken into account for this correction - Qa u is determined from overflow from Sa --> incorporation of beta function - Fa is based on storage in Sa - Fa is decreased in case of frozen soil - Code for ini-file: 10 """ #JarvisCoefficients.calcEp(self,k) #self.PotEvaporation = self.EpHour self.samax2 = self.samax[k] * scalar(self.TopoId) self.Qaadd = max(self.Sa_t[k] + self.Pe - self.samax2,0) self.FrDur[k] = min(self.FrDur[k] + (self.Temperature) / 86400 * self.timestepsecs * self.dayDeg[k], 0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) self.SaN = self.Sa[k] / self.samax2 self.SuN = self.Su[k] / self.sumax[k] self.Ea1 = max((self.PotEvaporation - self.Ei),0) * min(self.Sa[k] / (self.samax2 * self.LP[k]),1) self.Qa1 = (self.Pe - self.Qaadd) * (1 - (1 - self.SaN) ** self.beta[k]) self.Ft = min(max(self.FrDur[k] / (self.FrDur1[k] - self.FrDur0[k]) - self.FrDur0[k] / (self.FrDur1[k] - self.FrDur0[k]), 0), 1) self.Fa1 = self.Ft * ifthenelse(self.SaN > 0,self.Fmin[k] + (self.Fmax[k] - self.Fmin[k]) * e ** (-self.decF[k] * (1 - self.SaN)),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Qa1 - self.Fa1 - self.Ea1 self.Sa_diff = ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Qa = self.Qa1 + (self.Qa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0, self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Fa = self.Fa1 + (self.Fa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0, self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Ea = self.Ea1 + (self.Ea1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0, self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Ea - self.Fa - self.Qa self.Sa[k] = ifthenelse(self.Sa[k] < 0, 0 , self.Sa[k]) self.Sa_diff2 = ifthen(self.Sa[k] < 0, self.Sa[k]) self.wbSa_[k] = self.Pe - self.Ea - self.Qa - self.Qaadd - self.Fa - self.Sa[k] + self.Sa_t[k] self.Ea_[k] = self.Ea self.Qa_[k] = self.Qa + self.Qaadd self.Fa_[k] = self.Fa self.Ft_[k] = self.Ft def agriZone_hourlyEp_Sa_beta_frostSamax(self,k): """ - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation based on LP - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato --> Eu is no longer taken into account for this correction - Qa u is determined from overflow from Sa --> incorporation of beta function - Fa is based on storage in Sa - Fa is decreased in case of frozen soil - Code for ini-file: 11 """ #JarvisCoefficients.calcEp(self,k) #self.PotEvaporation = self.EpHour self.FrDur[k] = min(self.FrDur[k] + (self.Temperature) * self.dayDeg[k], 0) self.Ft = min(max(self.FrDur[k] / (self.FrDur1[k] - self.FrDur0[k]) - self.FrDur0[k] / (self.FrDur1[k] - self.FrDur0[k]), 0.1), 1) self.samax2 = self.samax[k] * scalar(self.TopoId) * self.Ft self.Qaadd = max(self.Sa_t[k] + self.Pe - self.samax2,0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) self.SaN = self.Sa[k] / self.samax2 self.SuN = self.Su[k] / self.sumax[k] self.Ea1 = max((self.PotEvaporation - self.Ei),0) * min(self.Sa[k] / (self.samax2 * self.LP[k]),1) self.Qa1 = (self.Pe - self.Qaadd) * (1 - (1 - self.SaN) ** self.beta[k]) self.Fa1 = ifthenelse(self.SaN > 0,self.Fmin[k] + (self.Fmax[k] - self.Fmin[k]) * e ** (-self.decF[k] * (1 - self.SaN)),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Qa1 - self.Fa1 - self.Ea1 self.Sa_diff = ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Qa = self.Qa1 + (self.Qa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0, self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Fa = self.Fa1 + (self.Fa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0, self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Ea = self.Ea1 + (self.Ea1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0, self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Ea - self.Fa - self.Qa self.Sa[k] = ifthenelse(self.Sa[k] < 0, 0 , self.Sa[k]) self.Sa_diff2 = ifthen(self.Sa[k] < 0, self.Sa[k]) self.wbSa_[k] = self.Pe - self.Ea - self.Qa - self.Qaadd - self.Fa - self.Sa[k] + self.Sa_t[k] self.Ea_[k] = self.Ea self.Qa_[k] = self.Qa + self.Qaadd self.Fa_[k] = self.Fa self.Ft_[k] = self.Ft def agriZone_Ep_Sa_beta_frostSamax(self,k): """ - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation based on LP - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato --> Eu is no longer taken into account for this correction - Qa u is determined from overflow from Sa --> incorporation of beta function - Fa is based on storage in Sa - Fa is decreased in case of frozen soil - Code for ini-file: 12 """ JarvisCoefficients.calcEp(self,k) self.PotEvaporation = self.EpHour self.FrDur[k] = min(self.FrDur[k] + ifthenelse(self.Temperature > 0, self.ratFT[k] * self.dayDeg[k] * self.Temperature, self.Temperature) * self.dayDeg[k], 0) self.Ft = min(max(self.FrDur[k] / (self.FrDur1[k] - self.FrDur0[k]) - self.FrDur0[k] / (self.FrDur1[k] - self.FrDur0[k]), 0.05), 1) self.samax2 = self.samax[k] * scalar(self.TopoId) * self.Ft self.Qaadd = max(self.Sa_t[k] + self.Pe - self.samax2,0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) self.SaN = self.Sa[k] / self.samax2 self.SuN = self.Su[k] / self.sumax[k] self.Ea1 = max((self.PotEvaporation - self.Ei),0) * min(self.Sa[k] / (self.samax2 * self.LP[k]),1) self.Qa1 = (self.Pe - self.Qaadd) * (1 - (1 - self.SaN) ** self.beta[k]) self.Fa1 = ifthenelse(self.SaN > 0,self.Fmin[k] + (self.Fmax[k] - self.Fmin[k]) * e ** (-self.decF[k] * (1 - self.SaN)),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Qa1 - self.Fa1 - self.Ea1 self.Sa_diff = ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Qa = self.Qa1 + (self.Qa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0, self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Fa = self.Fa1 + (self.Fa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0, self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Ea = self.Ea1 + (self.Ea1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0, self.Fa1 + self.Ea1 + self.Qa1, 1)) * self.Sa_diff self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Ea - self.Fa - self.Qa self.Sa[k] = ifthenelse(self.Sa[k] < 0, 0 , self.Sa[k]) self.Sa_diff2 = ifthen(self.Sa[k] < 0, self.Sa[k]) self.wbSa_[k] = self.Pe - self.Ea - self.Qa - self.Qaadd - self.Fa - self.Sa[k] + self.Sa_t[k] self.Ea_[k] = self.Ea self.Qa_[k] = self.Qa + self.Qaadd self.Fa_[k] = self.Fa self.Ft_[k] = self.Ft def agriZone_Ep_Sa_beta_Fvar(self,k): """ - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation based on LP - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato --> Eu is no longer taken into account for this correction - Qa u is determined from overflow from Sa --> incorporation of beta function - Fa is based on storage in Sa - Code for ini-file: 8 """ JarvisCoefficients.calcEp(self,k) self.PotEvaporation = self.EpHour self.samax2 = self.samax[k] * scalar(self.TopoId) self.Qaadd = max(self.Sa_t[k] + self.Pe - self.samax2,0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) self.SaN = self.Sa[k] / self.samax2 self.SuN = self.Su[k] / self.sumax[k] self.Ea1 = max((self.PotEvaporation - self.Ei),0) * min(self.Sa[k] / (self.samax2 * self.LP[k]),1) self.Qa1 = (self.Pe - self.Qaadd) * (1 - (1 - self.SaN) ** self.beta[k]) self.Fa1 = self.cropG * ifthenelse(self.SaN > 0,self.Fmin[k] + (self.Fmax[k] - self.Fmin[k]) * e ** (-self.decF[k] * (1 - self.SaN)),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Qa1 - self.Fa1 - self.Ea1 self.Sa_diff = ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Qa = self.Qa1 + (self.Qa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0 , self.Fa1 + self.Ea1 + self.Qa1 , 1)) * self.Sa_diff self.Fa = self.Fa1 + (self.Fa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0 , self.Fa1 + self.Ea1 + self.Qa1 , 1)) * self.Sa_diff self.Ea = self.Ea1 + (self.Ea1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0 , self.Fa1 + self.Ea1 + self.Qa1 , 1)) * self.Sa_diff self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Ea - self.Fa - self.Qa self.Sa[k] = ifthenelse(self.Sa[k] < 0, 0 , self.Sa[k]) self.Sa_diff2 = ifthen(self.Sa[k] < 0, self.Sa[k]) self.wbSa_[k] = self.Pe - self.Ea - self.Qa - self.Qaadd - self.Fa - self.Sa[k] + self.Sa_t[k] self.Ea_[k] = self.Ea self.Qa_[k] = self.Qa + self.Qaadd self.Fa_[k] = self.Fa def agriZone_hourlyEp_Sa_beta_Fvar(self,k): """ - Potential evaporation is decreased by energy used for interception evaporation - Formula for evaporation based on LP - Outgoing fluxes are determined based on (value in previous timestep + inflow) and if this leads to negative storage, the outgoing fluxes are corrected to rato --> Eu is no longer taken into account for this correction - Qa u is determined from overflow from Sa --> incorporation of beta function - Fa is based on storage in Sa - Code for ini-file: 9 """ # JarvisCoefficients.calcEp(self,k) # self.PotEvaporation = self.EpHour self.samax2 = self.samax[k] * scalar(self.TopoId) self.Qaadd = max(self.Sa_t[k] + self.Pe - self.samax2,0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) self.SaN = self.Sa[k] / self.samax2 self.SuN = self.Su[k] / self.sumax[k] self.Ea1 = max((self.PotEvaporation - self.Ei),0) * min(self.Sa[k] / (self.samax2 * self.LP[k]),1) self.Qa1 = (self.Pe - self.Qaadd) * (1 - (1 - self.SaN) ** self.beta[k]) self.Fa1 = self.cropG * ifthenelse(self.SaN > 0,self.Fmin[k] + (self.Fmax[k] - self.Fmin[k]) * e ** (-self.decF[k] * (1 - self.SaN)),0) self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Qa1 - self.Fa1 - self.Ea1 self.Sa_diff = ifthenelse(self.Sa[k] < 0, self.Sa[k], 0) self.Qa = self.Qa1 + (self.Qa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0 , self.Fa1 + self.Ea1 + self.Qa1 , 1)) * self.Sa_diff self.Fa = self.Fa1 + (self.Fa1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0 , self.Fa1 + self.Ea1 + self.Qa1 , 1)) * self.Sa_diff self.Ea = self.Ea1 + (self.Ea1/ifthenelse(self.Fa1 + self.Ea1 + self.Qa1 > 0 , self.Fa1 + self.Ea1 + self.Qa1 , 1)) * self.Sa_diff self.Sa[k] = self.Sa_t[k] + (self.Pe - self.Qaadd) - self.Ea - self.Fa - self.Qa self.Sa[k] = ifthenelse(self.Sa[k] < 0, 0 , self.Sa[k]) self.Sa_diff2 = ifthen(self.Sa[k] < 0, self.Sa[k]) self.wbSa_[k] = self.Pe - self.Ea - self.Qa - self.Qaadd - self.Fa - self.Sa[k] + self.Sa_t[k] self.Ea_[k] = self.Ea self.Qa_[k] = self.Qa + self.Qaadd self.Fa_[k] = self.Fa