Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/UpliftDitchA.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineSequenceAssessmentRegional.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Sequence Design.uxf
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Sequence Design.uxf (revision 0)
+++ DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Sequence Design.uxf (revision 3911)
@@ -0,0 +1,326 @@
+
+
+ 10
+
+ UMLGeneric
+
+ 90
+ 160
+ 20
+ 170
+
+
+bg=yellow
+
+
+
+ UMLGeneric
+
+ 210
+ 40
+ 140
+ 50
+
+ :Failure Mechanism
+Calculator
+bg=orange
+
+
+
+ UMLGeneric
+
+ 30
+ 40
+ 140
+ 30
+
+ :Assessment Dikes
+bg=orange
+
+
+
+ UMLGeneric
+
+ 370
+ 40
+ 140
+ 50
+
+ :Geometry Creator
+bg=orange
+
+
+
+ UMLGeneric
+
+ 530
+ 40
+ 140
+ 50
+
+ :Waternet Creator
+bg=orange
+
+
+
+ UMLGeneric
+
+ 690
+ 40
+ 140
+ 50
+
+ :Failure Mechanism
+Wrappers
+bg=orange
+
+
+
+ UMLGeneric
+
+ 260
+ 160
+ 20
+ 600
+
+
+bg=yellow
+
+
+
+ Relation
+
+ 260
+ 80
+ 30
+ 100
+
+ lt=.
+ 10.0;10.0;10.0;80.0
+
+
+ Relation
+
+ 100
+ 210
+ 180
+ 30
+
+ lt=<<<-
+ 160.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 100
+ 260
+ 180
+ 30
+
+ lt=<<<-
+ 10.0;10.0;160.0;10.0
+
+
+ UMLGeneric
+
+ 420
+ 160
+ 20
+ 130
+
+
+bg=yellow
+
+
+
+ UMLGeneric
+
+ 580
+ 290
+ 20
+ 130
+
+
+bg=yellow
+
+
+
+ UMLGeneric
+
+ 740
+ 430
+ 20
+ 130
+
+
+bg=yellow
+
+
+
+ Relation
+
+ 270
+ 190
+ 170
+ 30
+
+ lt=<<<-
+ 150.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 270
+ 250
+ 170
+ 30
+
+ lt=<<<-
+ 10.0;10.0;150.0;10.0
+
+
+ Relation
+
+ 270
+ 320
+ 330
+ 30
+
+ lt=<<<-
+ 310.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 270
+ 380
+ 330
+ 30
+
+ lt=<<<-
+ 10.0;10.0;310.0;10.0
+
+
+ Relation
+
+ 270
+ 460
+ 490
+ 30
+
+ lt=<<<-
+ 470.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 270
+ 530
+ 490
+ 30
+
+ lt=<<<-
+ 10.0;10.0;470.0;10.0
+
+
+ Relation
+
+ 420
+ 80
+ 30
+ 100
+
+ lt=.
+ 10.0;10.0;10.0;80.0
+
+
+ Relation
+
+ 580
+ 80
+ 30
+ 230
+
+ lt=.
+ 10.0;10.0;10.0;210.0
+
+
+ Relation
+
+ 90
+ 60
+ 30
+ 120
+
+ lt=.
+ 10.0;10.0;10.0;100.0
+
+
+ Relation
+
+ 740
+ 80
+ 30
+ 370
+
+ lt=.
+ 10.0;10.0;10.0;350.0
+
+
+ UMLGeneric
+
+ 850
+ 40
+ 140
+ 50
+
+ :Surfaceline Adapters
+bg=orange
+
+
+
+ UMLGeneric
+
+ 910
+ 560
+ 20
+ 130
+
+
+bg=yellow
+
+
+
+ Relation
+
+ 910
+ 80
+ 30
+ 500
+
+ lt=.
+ 10.0;10.0;10.0;480.0
+
+
+ Relation
+
+ 270
+ 590
+ 660
+ 30
+
+ lt=<<<-
+ 640.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 270
+ 640
+ 660
+ 30
+
+ lt=<<<-
+ 10.0;10.0;640.0;10.0
+
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/PL1_RRD.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/piping4.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/dempingfactor.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/RRDScenarioSelection.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/RRDScenarioSelection.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/RRDScenarioSelection.tex (revision 3911)
@@ -0,0 +1,58 @@
+\chapter{REQCalcAssessRegional} \label{sec:RRDScenarioSelection}
+
+For the assessment of regional dikes, \ProgramName must calculate several assessment scenarios (RRD-scenario) depending on:
+
+ \begin{itemize}
+ \item the type embankment (peat/other); green block in \autoref{fig:RRDClay} and \autoref{fig:RRDPeat};
+ \item the hydraulic shortcut (yes/no); brown block in \autoref{fig:RRDClay}, \autoref{fig:RRDPeat} and in detail in \autoref{fig:HydraulicShortcut};
+ \item the uplift situation (yes/no); purple blocks in \autoref{fig:RRDClay} and blue blocks in \autoref{fig:RRDPeat}.
+\end{itemize}
+
+This results in a variation of RRD scenarios, summed up in \autoref{tab:RRDScenarios}
+
+\begin{figure}[H]
+ \begin{center}
+ \includegraphics[width=15cm]{pictures/RRDClay.png}
+ \end{center}
+ \caption{Flowchart of embankments other than peat}
+ \label{fig:RRDClay}
+\end{figure}
+
+
+\begin{figure}[H]
+ \begin{center}
+ \includegraphics[width=15cm]{pictures/RRDPeat.png}
+ \end{center}
+ \caption{Flowchart of embankments of peat}
+ \label{fig:RRDPeat}
+\end{figure}
+
+\begin{figure}[H]
+ \begin{center}
+ \includegraphics[width=15cm]{pictures/HydraulicShortcut.png}
+ \end{center}
+ \caption{Flowchart of hydraulic shortcut}
+ \label{fig:HydraulicShortcut}
+\end{figure}
+
+
+\begin{table}[H]
+\centering
+\begin{tabular}{|p{18mm}|p{37mm}|p{20mm}|p{20mm}|p{\textwidth-105mm-36pt}|}
+\hline
+\textbf{RRD Scenario} & \textbf{Condition} & \textbf{Hydraulic Shortcut} & \textbf{Uplift} & \textbf{Model} \\ \hline
+1 & Dry & yes & yes & Uplift \\ \hline
+2 & Dry & no & yes & Uplift \\ \hline
+3 & Wet & yes & yes & Uplift \\ \hline
+4 & Wet & no & yes & Uplift \\ \hline
+5 & Dry & yes & no & Bishop \\ \hline
+6 & Dry & no & no & Bishop \\ \hline
+7 & Wet & yes & no & Bishop \\ \hline
+8 & Wet & no & no & Bishop \\ \hline
+9 & Dry & yes/no & yes & Horizontal balance \\ \hline
+10 & Wet & yes/no & yes & Piping \\ \hline
+11 & Dry & yes/no & yes & Piping \\ \hline
+\end{tabular}
+\caption{RRD scenarios}
+\label{tab:RRDScenarios}
+\end{table}
\ No newline at end of file
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/pictures/DAMEngineSequenceDesign.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Data Model Location.uxf
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Data Model Location.uxf (revision 0)
+++ DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Data Model Location.uxf (revision 3911)
@@ -0,0 +1,192 @@
+
+
+ 12
+
+ UMLClass
+
+ 96
+ 372
+ 312
+ 228
+
+ Location
+--
++ Name
+
+
+
+ Relation
+
+ 396
+ 36
+ 372
+ 408
+
+ lt=<-
+m1=*
+ 290.0;10.0;10.0;320.0
+
+
+ UMLClass
+
+ 744
+ 0
+ 312
+ 120
+
+ SoilSegment
+--
+
+
+
+
+ UMLClass
+
+ 744
+ 180
+ 312
+ 120
+
+ SurfaceLine
+--
+
+
+
+
+ Relation
+
+ 396
+ 216
+ 372
+ 252
+
+ lt=<-
+m1=1
+ 290.0;10.0;10.0;190.0
+
+
+ UMLClass
+
+ 744
+ 360
+ 312
+ 120
+
+ WaternetOptions
+--
+
+
+
+
+ UMLClass
+
+ 744
+ 540
+ 312
+ 120
+
+ DesignOptions
+--
+
+
+
+
+ UMLClass
+
+ 744
+ 708
+ 312
+ 120
+
+ SensorData
+--
+
+
+
+
+ Relation
+
+ 396
+ 396
+ 372
+ 108
+
+ lt=<-
+m1=1
+ 290.0;10.0;10.0;70.0
+
+
+ Relation
+
+ 396
+ 492
+ 372
+ 120
+
+ lt=<-
+m1=1
+ 290.0;70.0;10.0;10.0
+
+
+ Relation
+
+ 396
+ 528
+ 372
+ 240
+
+ lt=<-
+m1=1
+ 290.0;180.0;10.0;10.0
+
+
+ UMLClass
+
+ 744
+ 864
+ 312
+ 120
+
+ LoadScenario
+--
+
+
+
+
+ Relation
+
+ 396
+ 564
+ 372
+ 348
+
+ lt=<-
+m1=*
+ 290.0;270.0;10.0;10.0
+
+
+ UMLClass
+
+ 744
+ 1020
+ 312
+ 120
+
+ IFailureMechanismOptions
+--
+
+
+
+
+ Relation
+
+ 360
+ 588
+ 408
+ 504
+
+ lt=<-
+m1=*
+ 320.0;400.0;10.0;10.0
+
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineActivityOperational.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/pictures/DAMEngineDataModelLocation.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Work/DamEngine Macrostability Integration tests.docx
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DeletedGeometryPoints.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/GISLine.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/piping3.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/SourcePictures.pptx
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Activity Operational.uxf
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Activity Operational.uxf (revision 0)
+++ DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Activity Operational.uxf (revision 3911)
@@ -0,0 +1,263 @@
+
+
+ 10
+
+ Relation
+
+ 800
+ 240
+ 30
+ 80
+
+ lt=<-
+ 10.0;60.0;10.0;10.0
+
+
+ UMLObject
+
+ 550
+ 110
+ 540
+ 740
+
+ Operational
+valign=top
+
+
+
+ UMLState
+
+ 760
+ 390
+ 110
+ 40
+
+ Create geometry
+bg=red
+
+
+
+ UMLState
+
+ 760
+ 630
+ 110
+ 40
+
+ Create Waternet
+bg=red
+
+
+
+ UMLState
+
+ 760
+ 710
+ 110
+ 40
+
+ Calculate
+with kernel
+bg=red
+
+
+
+ UMLSpecialState
+
+ 790
+ 300
+ 40
+ 40
+
+ bg=green
+type=decision
+
+
+
+ UMLSpecialState
+
+ 800
+ 160
+ 20
+ 20
+
+ type=initial
+
+
+
+ Relation
+
+ 800
+ 330
+ 110
+ 80
+
+ lt=<-
+location found
+ 10.0;60.0;10.0;10.0
+
+
+ Relation
+
+ 800
+ 420
+ 30
+ 70
+
+ lt=<-
+ 10.0;50.0;10.0;10.0
+
+
+ Relation
+
+ 800
+ 660
+ 30
+ 70
+
+ lt=<-
+ 10.0;50.0;10.0;10.0
+
+
+ Relation
+
+ 590
+ 220
+ 220
+ 370
+
+ no timestep found
+lt=<-
+ 170.0;10.0;10.0;10.0;10.0;350.0;200.0;350.0
+
+
+ Relation
+
+ 800
+ 740
+ 30
+ 70
+
+ lt=<-
+ 10.0;50.0;10.0;10.0
+
+
+ UMLState
+
+ 760
+ 210
+ 110
+ 40
+
+ Find next
+location
+bg=red
+
+
+
+ UMLSpecialState
+
+ 970
+ 310
+ 20
+ 20
+
+ type=final
+
+
+
+ Relation
+
+ 820
+ 300
+ 170
+ 40
+
+ lt=<-
+no location found
+ 150.0;20.0;10.0;20.0
+
+
+ UMLState
+
+ 760
+ 790
+ 110
+ 40
+
+ Add outcome
+to results
+bg=red
+
+
+
+ Relation
+
+ 800
+ 170
+ 30
+ 60
+
+ lt=<-
+ 10.0;40.0;10.0;10.0
+
+
+ UMLState
+
+ 760
+ 470
+ 110
+ 40
+
+ Find next
+timestep
+bg=red
+
+
+
+ UMLSpecialState
+
+ 790
+ 550
+ 40
+ 40
+
+ bg=green
+type=decision
+
+
+
+ Relation
+
+ 800
+ 500
+ 30
+ 70
+
+ lt=<-
+ 10.0;50.0;10.0;10.0
+
+
+ Relation
+
+ 800
+ 580
+ 120
+ 70
+
+ timestep found
+lt=<-
+ 10.0;50.0;10.0;10.0
+
+
+ Relation
+
+ 860
+ 480
+ 130
+ 350
+
+ lt=<-
+ 10.0;10.0;110.0;10.0;110.0;330.0;10.0;330.0
+
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/DAM Engine - Functional Design.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/DAM Engine - Functional Design.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/DAM Engine - Functional Design.tex (revision 3911)
@@ -0,0 +1,75 @@
+\documentclass{deltares_report}
+\usepackage[titletoc]{appendix}
+\usepackage{multirow}
+%-----------------------------------------------
+
+\makeatletter
+
+\begin{document}
+\pagestyle{empty}
+\cleardoublepage
+%
+
+\newcommand{\ProgramName}{DAM Engine\xspace}
+\newcommand{\kernel}{failuremechanism kernel\xspace}
+\newcommand{\MacroStabilityKernel}{Macro Stability kernel 22.2\xspace}
+
+\title{\ProgramName}
+\subtitle{Functional Design}
+\projectnumber{1210702-000}
+\client{Deltares - Geo engineering DKS}
+\reference{1210702-000-GEO-0003}
+\classification{-}
+\author{Irene van der Zwan, John Bokma}
+\partner{-}
+\contact{john.bokma@deltares.nl}
+\documentid{-}
+\organisationi{Deltares}
+\publisheri{Deltares - DSC}
+
+\date{Sep. 2022}
+\version{0.3}
+
+\keywords{Dike, safety assessment, design, software, macro stability, piping}
+
+\summary{This document contains the functional design for \ProgramName, a software module that computes the strength of a complete dike stretch with respect to several failure mechanisms, such as macro stability and piping.\newline
+\newline
+\textbf{\footnotesize{Samenvatting}} \newline
+Dit document bevat het functioneel ontwerp voor \ProgramName, een software module die, gekoppeld aan een GUI, de gebruiker in staat stelt om voor een dijktraject berekeningen uit te voeren voor verschillende faalmechanismen, waaronder macrostabiliteit en piping.}
+
+\versioni{0.2}
+\datei{Sep 2019}
+\authori{Irene van der Zwan}
+\revieweri{Kin Sun Lam \newline Andr\'e Grijze}
+\approvali{Leo Voogt}
+
+\versioni{0.3}
+\datei{July 2022}
+\authori{John Bokma}
+\revieweri{Kin Sun Lam \newline Walter Austmann}
+\approvali{Leo Voogt}
+
+\status{draft}
+\disclaimer{This is a draft report, intended for discussion purposes only. No part of this report may be relied upon by either principals or third parties.}
+
+\deltarestitle
+
+\include{FO}
+\include{Literature}
+
+%------------------------------------------------------------------------------
+\appendix\chapter*{Appendix} \addcontentsline{toc}{chapter}{Appendix}
+% ToDo MWDAM-1719 investigate if FOWBIPipingKernel.tex and RRDScenarioSelection.tex should also be included here.
+\include{UseStabKernel}
+\include{UpliftCalculations}
+\include{FODAMPipingKernel}
+\include{UseWBIPipingKernel}
+\include{DesignGeometryAdaption}
+\include{REQDataGenerationWater}
+%-----------------------------------------------------------------------------
+
+\pagestyle{empty}
+\mbox{}
+
+%------------------------------------------------------------------------------
+\end{document}
\ No newline at end of file
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/UseStabKernel.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/UseStabKernel.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/UseStabKernel.tex (revision 3911)
@@ -0,0 +1,175 @@
+\chapter{Use of the \MacroStabilityKernel} \label{sec:UseStabKernel}
+
+For stabilily calculation the DAM engine uses the \MacroStabilityKernel.
+This use is restricted to the options described in this chapter.
+
+\section{Model}\label{sec:Model}
+The DAM Engine must be able to make calculations with following models:
+ \begin{itemize}
+ \item Bishop
+ \item Uplift Van
+ \item Bishop/Uplift Van
+ \end{itemize}
+
+All models are available for inwards stability. For outward stability only Bishop is used.
+
+The choice of the model is a demand of the client:\\
+DAM Client can demand Bishop, Uplift Van or combination Bishop/Uplift Van.\\
+
+\subsection{Combination model Bishop/Uplift Van}
+\label{sec:CombinationBishopUpliftVan}
+
+The combination model Bishop-Uplift Van gives three results:
+\begin{enumerate}
+ \item Bishop
+ \item Uplift Van\newline
+ The client provides a requested uplift safety. The Uplift Van calculation is made when this requested uplift safety factor is lower than the calculated uplift safety factor (for definition see
+ \autoref{sec:UpliftCalculation}). Otherwise the result is 'not calculated'.
+ \item Normative result (lowest safety factor) of both.
+\end{enumerate}
+
+\section{Slip plane definition and calculation area}\label{sec:PlaneDefinitionAndCalculationArea}
+
+\subsection{Search method}
+For both models Bishop and Upift Van, a brute force search method is available. With this method the grids are moved automatically as long as the center point(s) for the found minimum value is on the edge of the search grid
+(with a maximum of 50 moves).
+See FD (\citep{MacroStabilityReqAndFD22}) of \MacroStabilityKernel for more information on this.
+
+For model Uplift Van, next to brute force the Bee Swarm search method is offered. Based on a set of steering parameters, this method finds a minimum based on the Bee Swarm method (for more information on this see the FD (\citep{MacroStabilityReqAndFD22}) of \MacroStabilityKernel).
+
+For the Bishop/Uplift Van combination model, for Bishop the brute force method will always be used whereas for the Uplift Van part the choice between brute force and Bee Swarm is given.
+
+\subsection{Grid generation}
+\label{sec:GridGeneration}
+
+For the models Bishop and Uplift Van a calculation grid must be generated.
+There are two options:
+\begin{enumerate}
+ \item automatic generation (Automatic)
+ \item user defined generation (Specified)
+\end{enumerate}
+
+Ad 1 Automatic generation\newline
+See FD (\citep{MacroStabilityReqAndFD22}) of \MacroStabilityKernel.
+
+Ad 2 Client defined generation\newline
+The client defines the dimensions; number of grid points and distance between the points. The \ProgramName defines the position of the grid depending on the characteristic points:
+For Bishop and for the active grid of Uplift Van the left (outside) bottom corner is situated at the surface line in the middle of the crest (distance between outer- and inner crest). The right bottom corner of the passive grid of Uplift Van is situated above the most right x co-ordinate where uplift occurs. With the restriction that the left bottom corner can not be situated left of the x co-ordinate of the DikeToePolder.
+
+\subsection{Tangent lines generation}
+\label{sec:TangentLinesGeneration}
+
+For the Bishop model only automatic generation is used.\newline
+The tangent lines are placed from the minimum Z-value of the surface line until 0.5 m below the upper geometry point of the lowest aquifer. The distance between the tangent lines is 0.25 m.
+
+For Uplift Van there are two client defined methods\newline
+Distance defined\newline
+For Uplift Van the client must provide the distance between the tangent lines.
+The lower tangent line is always situated 0.5 m below the boundary of the upper aquifer. The tangent lines are drawn with the given distance until the minimum Z value of the passive grid.\newline
+On boundary - Op laagscheidingen (default)\newline
+On every boundary of the subsoil layer.
+
+\subsection{Calculation area}
+\label{sec:CalculationArea}
+For the model Horizontal balance a calculation area must be defined:
+\begin{table*}[h]
+ \centering
+ \begin{tabular}{|p{50mm}|p{90mm}|} \hline
+ \textbf{Parameter} & \textbf{Default value}\\ \hline
+ X co-ordinate left side [m]& x co-ordinate DikeTopAtRiver\\ \hline
+ X co-ordinate right side [m]& x co-ordinate DikeToeAtPolder\\ \hline
+ Highest slip plane level [m]& Z value PL4 or PL3 (when one aquifer present) at x co-ordinate DikeToeAtRiver \\ \hline
+ Lowest slip plane level [m]& Maximum Z value of top aquifer within calculation area\\ \hline
+ Number of planes in the slip plane level [-]& 12\\ \hline
+ \end{tabular}
+ \caption{Calculation area for horizontal balance}
+ \label{tab:CalcutlationArea}
+\end{table*}
+
+
+\section{Shear strength model}\label{sec:ShearStrengthModel}
+The DAM engine must be able to make stability calculations with following shear strength models:
+ \begin{itemize}
+ \item C-Phi
+ \item Stress tables
+ \item Cu calculated (with default inital surface level of D-Geo Stability; toplayer)
+ \item Cu measured
+ \item Cu gradient
+ \item Pseudo values
+ \end{itemize}
+ This shear strength models are defined in the soil parameters per layer.
+
+\section{Zone Plot}
+\label{sec:Zoneplot}
+The option of zone plot in D-Geo Stability is defined as the distinction of the slip circles in different zones; 1a, 1b, 2a, 2b, 3a and 3b, see manual D-Geo Stability.\newline
+DAM only uses zone 1 and zone 2.
+Zone Plot is used when\textsl{\textcolor[rgb]{0.65,0.16,0}{ZoneType}} = ZoneAreas
+
+The following settings for the Zone plot of D-Geo Stability are used by DAM:\newline
+
+\begin{itemize}
+ \item Dike table heigth: user defined : \textcolor[rgb]{0.65,0.16,0}{\textsl{DikeTableHeight}}
+ \item Dike table width: 3 m
+ \item Start x co-ordinate restprofile: Xlocal;DikeTopAtRiver
+ \item Boundary of design level influence at x: Xlocal;DSurfaceLevelInside
+ \item Boundary of design level influence at y: maximal Y co-ordinate of surface line
+ \item Required safety in zones: \textsl{\textcolor[rgb]{0.65,0.16,0}{RequiredSafetyFactorStabilityInnerSlope}}
+\end{itemize}
+Calculation with zone areas is only possible for inward stability calculations.
+
+\section{Calculation options}\label{sec:CalculationOptions}
+D-Geostability offers different following calculation options. \ProgramName uses for the following settings the defaults of D-Geo Stability 18.1:
+
+\begin{itemize}
+ \item Requested number of slices: default D-Geo Stability
+ \item Minimum slip plan length: default D-Geo Stability
+ \item Start value safety factor: default D-Geo Stability
+ \item Minimum x-entrance used: default D-Geo Stability
+\end{itemize}
+
+The following settings can be defined by the client:
+\begin{itemize}
+ \item Minimum circle depth
+ \item Maximum x-entrance
+\end{itemize}
+
+The maximum x-entrance used is not directly client defined. The client provides a Forbidden zone and the \ProgramName calculates a maximum x-entrance via a method described in \autoref{sec:ForbiddenZone}.
+
+\subsubsection{Forbidden zone }\label{sec:ForbiddenZone}
+Forbidden zone is an option to define a forbidden zone for the entrance point of the slip plane.
+The forbidden zone is situated to the rigth side of a certain x co-ordinate. This x co-ordinate is defined by the \textsl{ForbiddenZoneFactor}. Xlocal;forbidden zone WF =(Xlocal;DikeTopAtPolder) + ForbiddenZoneFactor*(Xlocal;DikeToeAtPolder - Xlocal;DikeTopAtPolder)
+A forbidden zone is used when \textsl{ZoneType} = ForbiddenZone (see \autoref{tab:ForbiddenZoneFactor}).
+
+\begin{table*}[ht]
+ \centering
+ \begin{tabular}{|p{35mm}|p{75mm}|} \hline
+ ForbiddenZonefactor & maximum x-entrance\\ \hline
+ 0 & x co-ordinate DikeTopAtPolder\\ \hline
+ 1 & x co-ordinate DikeToeAtPolder\\ \hline
+ \end{tabular}
+ \caption{Forbidden zone factor}
+ \label{tab:ForbiddenZoneFactor}
+\end{table*}
+
+In a picture:
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=0.95\textwidth]{pictures/ForbiddenZoneFactor.png}
+ \caption{Forbidden zone factor}
+ \label{fig:ForbiddenZoneFactor}
+\end{figure}
+
+\section{Traffic load Degree of consolidation}\label{sec:TLDegOfCo}
+The traffic load degree of consolidation is a material parameter. This may vary per location, per traffic load and hydraulic load.
+Therefore it must be possible to define the traffic load degree of consolidation per location.\newline
+In the UI the import of the traffic load degree of consolidation is done per material via soilmaterials.mdb and per location via csv-file or shape-file.\newline
+\newline
+The hierarchy is:
+\begin{enumerate}
+ \item Traffic load degree of consolidation per material.\newline
+ For material types peat, clay and loam overwritten by:
+ \item Traffic load degree of consolidation per location.
+\end{enumerate}
+
+So the Traffic load degree of consolidation of the material types sand and gravel keep the value from soilmaterials.mdb.
Index: DamEngine/tags/23.1.1/doc/Doxygen/Deltares logo.ico
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/UpliftDitchB.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/wsp_1WL.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Doxygen/RunDoxygen.bat
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Doxygen/RunDoxygen.bat (revision 0)
+++ DamEngine/tags/23.1.1/doc/Doxygen/RunDoxygen.bat (revision 3911)
@@ -0,0 +1,8 @@
+"doxygen.exe" DamEngine.Doxyfile > Doxygen.log
+
+call "latex\make.bat" >> Doxygen.log
+
+copy "latex\refman.pdf" "..\Dam Engine - Technical Documentation.pdf" >> Doxygen.log
+
+
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/UpliftCalculations.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/UpliftCalculations.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/UpliftCalculations.tex (revision 3911)
@@ -0,0 +1,17 @@
+\chapter{Uplift calculation}\label{sec:UpliftCalculation}
+
+\ProgramName makes calculations to see whether there is any uplift from the inner toe to the centre of the ditch bottom or to the right limit of the geometry if there is no ditch.\newline
+The formula from the VTV (2006) is used for this purpose.
+\begin{equation}
+\label{eq_opdrukveiligheid}
+ Uplift safety = \frac{\sigma_g}{\sigma_w}
+\end{equation}
+
+The check for uplift is done at every surface line point from the characteristic point DikeToeAtPolder to the centre of the ditch bottom or to the characteristic point SurfaceLevelInside (from left to right).
+
+The check for uplift has the following purposes:
+\begin{itemize}
+ \item To decide if a LiftVan calculation is required, see \autoref{sec:CombinationBishopUpliftVan}.
+ \item To generate the piezometric levels, see \autoref{sec:CheckUplift}\newline
+\end{itemize}
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineDataModelLocation.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/DesignGeometryAdaption.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/DesignGeometryAdaption.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/DesignGeometryAdaption.tex (revision 3911)
@@ -0,0 +1,111 @@
+\chapter{REQDesignGeometry} \label{sec:DesignGeometryAdaption}
+For the purposes of policy studies or determining impact scope or emergency measures, it can be useful to generate a profile that corresponds to the stated safety factor. The stated safety factor can be given for stability inward and for piping.\ProgramName can make automatic geometry adaptations for this purpose using a number of basic assumptions.\newline
+
+Automatic profile adaptation in \ProgramName consists of the following steps:
+\begin{enumerate}
+ \item Raising the crest (see \autoref{sec:RaiseCrest})
+ \item Reducing the gradient of the slope (see \autoref{sec:ReduceSlope})
+ \item Shoulder adaption (see \autoref{sec:ShoulderAdaption})
+\end{enumerate}
+
+The order of the steps 2 and 3 of the adeption method is defined by \textit{\textcolor[rgb]{0.65,0.16,0}{StabilityDesignMethod}}. There are two options:
+
+ \begin{itemize}
+ \item Optimized Slope And Shoulder Adaption\newline
+ Apply slope adaption when slip circle exits in slope, conform \autoref{sec:ReduceSlope}, apply shoulder adaption when slip circle exits in polder (at right side of Dike toe at polder).
+ \item Slope Adaption Before Shoulder Adaption\newline
+ First apply slope adaption starting with a given slope (\textit{\textcolor[rgb]{0.65,0.16,0}{SlopeAdaptionStartCotangent}}), stepping with a given adaption (\textit{\textcolor[rgb]{0.65,0.16,0}{SlopeAdaptionStepCotangent}}) until a certain given slope (\textit{\textcolor[rgb]{0.65,0.16,0}{SlopeAdaptionStepCotangent}}); only after that apply shoulder adaption.
+\end{itemize}
+
+\section{Raising the crest} \label{sec:RaiseCrest}
+During this step, \ProgramName checks whether the crest height complies with the required (in other words the stated) dike table height (DTH, \textcolor[rgb]{0.65,0.16,0}{\textsl{DikeTableHeight}}).\\
+If the crest height (the Z value for characteristic point Outer crest) is equal to or higher than the stated DTH, the profile will not be adapted. If the profile is lower than the stated DTH, \ProgramName adjusts the geometry and creates a new surface line based on the original slope gradients ($\alpha$ and $\beta$) and the original crest width (B), see \autoref{fig:DTHAdaptedGeometry}.\\
+The slope gradients, and the crest width, are determined on the basis of the following characteristic points:
+\begin{itemize}
+ \item The outer slope gradient ($\alpha$) follows from the calculated gradient on the basis of the outer toe and the outer crest line. If there is an outer shoulder, the outer slope gradient is determined on the basis of the top of the outer shoulder and the outer crest line.
+ \item The crest width (B) follows from the distance between the characteristic points in the outer crest line and inner crest line.
+ \item The outer slope gradient ($\alpha$) follows from the calculated gradient on the basis of the inner toe and the inner crest line. If there is a inner shoulder, the inner slope gradient will be determined on the basis of the top of the inner shoulder and the inner crest line.
+\end{itemize}
+
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/DTHAdaptedGeometry.png}
+ \caption{Adapted geometry for DTH}
+ \label{fig:DTHAdaptedGeometry}
+\end{figure}
+
+The adapted geometry starts at the toe at riverside (outer toe) in the initial profile, see \autoref{fig:DeletedGeometryPoints}.
+If there is no inner shoulder, the toe at polderside (inner toe) of the adapted profile will be further away on the profile than the original inner toe, see \autoref{fig:DTHAdaptedGeometry}. If the adapted geometry intersects with a inner shoulder, the top of the inner shoulder will be moved, see \autoref{fig:DeletedGeometryPoints}.
+
+In all adapted profiles, the geometry points within the adapted profile will be removed. The characteristic points will move in accordance with the adaptation of the geometry.
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/DeletedGeometryPoints.png}
+ \caption{Adapted geometry by deleting geometry points}
+ \label{fig:DeletedGeometryPoints}
+\end{figure}
+
+If there is an outer shoulder, the adapted geometry will start at the shoulder base outside, see \autoref{fig:OuterShoulderAdeptedGeometry}.
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/OuterShoulderAdeptedGeometry.png}
+ \caption{Adapted geometry when outer shoulder is present}
+ \label{fig:OuterShoulderAdeptedGeometry}
+\end{figure}
+
+If the geometry adaptation results in the new dike base being so wide that the entire initial geometry is contained within the adapted profile, all the intermediate geometry points, including the characteristic points in the inner shoulder, will be removed, see \autoref{fig:LargerDikeBase}.
+
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/LargerDikeBase.png}
+ \caption{Adapted geometry with starting point for geometry of outer toe and larger dike base}
+ \label{fig:LargerDikeBase}
+\end{figure}
+
+If there is a ditch in the profile, \ProgramName will move the ditch if the adapted inner toe is further away than the location of the inner toe in the initial profile. The ditch is moved along the unchanged part of the initial profile. If the ditch is moved, \ProgramName will maintain the original distance from the inner toe to the outer edge of the ditch ($\Delta$). The original dimensions of the ditch will be maintained. See \autoref{fig:MoveDitch}.
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/MoveDitch.png}
+ \caption{Moving the ditch}
+ \label{fig:MoveDitch}
+\end{figure}
+
+\section{Reducing the gradient of the slope}\label{sec:ReduceSlope}
+After the adaptation of the crest height in accordance with DTH (if necessary), \ProgramName will first carry out a stability calculation. If it should emerge that the exit point of the slip circle is on the inner slope and if the calculated safety factor is less than the stated safety factors, \ProgramName will (on condition that the profile adaptation option is on) reduce the gradient of the slope until the calculated safety factor $\ge$ required safety factor and the exit point of the slip circle is on the inner slope, see \autoref{fig:ReduceSlope}. If the exit point is no longer on the inner slope and the calculated safety factor does not comply with the desired safety factor, \ProgramName will generate a stability shoulder, see \autoref{fig:ShoulderDevelop}.
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/ReduceSlope.png}
+ \caption{Iterative reduction of the gradient of the inner slope on the basis of the exit point of the slip circle}
+ \label{fig:ReduceSlope}
+\end{figure}
+
+\section{Shoulder adaption} \label{sec:ShoulderAdaption}
+\ProgramName develops a stability shoulder iteratively as long as the slip circle does not intersect with the landslide slope (see \autoref{sec:ReduceSlope}) and the stated safety level has not yet been achieved. The maximum number of iteration stages is 200. This limit prevents \ProgramName getting stuck in an infinite iteration loop if the stated safety level is not achieved.
+
+The algorithm used is based on moving the crest of the landslide shoulder in a straight line along an incline ($\alpha$), see \autoref{fig:ShoulderDevelop}. The default value is 0.33 (1:3) but it can also be stated by the user (attribute StabilityShoulderGrowSlope).
+
+The adaptation of the shoulder involves moving the inner toe in steps ($\Delta_S$). The steps are in the horizontal direction and the standard steps are 1 metre in length but they can be changed by the user (attribute StabilityShoulderGrowDeltaX). Shoulder development stops when the calculated safety factor in the adapted profile $\ge$ the stated safety factor.
+
+The inner toe is used as the starting point for shoulder development. If there is already a shoulder in the original cross-section, the crest inner shoulder point is used as the starting point. During shoulder development, the crest of the shoulder remains horizontal, as with the raising of the crest, see \autoref{sec:RaiseCrest}.
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/ShoulderDevelop.png}
+ \caption{Iterative shoulder development for macrostability}
+ \label{fig:ShoulderDevelop}
+\end{figure}
+
+
+
+
+\section{Restrictions use of design mode}\label{sec:RestrictionsUseOfDesignMode}
+
+In design mode a single stability model must be chosen; option Bishop/LiftVan is not possible.
+
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/FODAMPipingKernel.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/FODAMPipingKernel.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/FODAMPipingKernel.tex (revision 3911)
@@ -0,0 +1,76 @@
+%to be translated
+\chapter{Use of DAM Piping kernel} \label{sec:UseDAMPipingKernel}
+
+
+
+Voor piping kan gekozen worden uit de volgende opties:
+
+\begin{enumerate}
+ \item Bligh
+ \item Sellmeijer 4 krachten model
+ \item Sellmeijer (VNK)
+ \item Sellmeijer revised(WBI)
+\end{enumerate}
+
+
+\section{Rekenregel van Bligh}
+\label{sec:RekenregelVanBligh}
+Hier wordt gebruik gemaakt van de standaard piping regel van Bligh met een creep factor van 18:
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=0.2\textwidth]{pictures/piping7.png}
+ \label{fig:piping7}
+\end{figure}
+
+
+\section{Sellmeijer 4 krachten model}
+\label{sec:Sellmeijer4KrachtenModel}
+
+Hier wordt gebruik gemaakt van de regel van Sellmeijer zoals omschreven in de TR Zandmeevoerende wellen uit 1996:
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=0.5\textwidth]{pictures/piping1.png}
+ \label{fig:piping1}
+\end{figure}
+
+waarbij:
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=0.2\textwidth]{pictures/piping2.png}
+ \label{fig:piping2}
+\end{figure}
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=0.2\textwidth]{pictures/piping3.png}
+ \label{fig:piping3}
+\end{figure}
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=0.2\textwidth]{pictures/piping4.png}
+ \label{fig:piping4}
+\end{figure}
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=0.7\textwidth]{pictures/piping5.png}
+ \label{fig:piping5}
+\end{figure}
+
+
+
+\section{Sellmeijer (VNK)}
+\label{sec:SellmeijerVNK}
+ De pipingberekeningen met het VNK model, een neuraal netwerk gebaseerd op het twee lagen model van Sellmeijer. Het model bestaat uit een grote collectie voorgemaakte sommen. De invoerparameters worden vergeleken met de invoer voor de voorgemaakte sommen en de uitkomst volgt door een interpolatie. In de eenvoudige toetsing wordt geen onderscheid gemaakt tussen een boven- en onderliggende zandlaag. Voor de berekeningen wordt de eerste watervoerende zandlaag uit het ondergrondmodel daarom gesplitst in twee lagen van gelijke dikte met dezelfde grondeigenschappen. De eigenschappen van Soil 3 zijn eveneens gelijk aan die van Soil1 en Soil 2. Het aanwezige verval is gedefinieerd door de buitenwaterstand verminderd met de waterstand bij het uittredepunt (polderpeil of maaiveldhoogte bij uittredepunt). De reductie van het verval met de term 0,3D, waarbij D de dikte van het slappe lagen pakket is, wordt verrekend op het kritieke verval, dus bij de sterkte kant.
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=0.9\textwidth]{pictures/piping6.png}
+ \caption{Schematisering ondergrond voor neuraal netwerk van Sellmeijer}
+ \label{fig:piping6}
+\end{figure}
+
+
+
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/piping2.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/piping7.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/parseLogs.py
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/parseLogs.py (revision 0)
+++ DamEngine/tags/23.1.1/doc/parseLogs.py (revision 3911)
@@ -0,0 +1,47 @@
+import os
+
+logDirectory = r"./BuildLogs"
+pdfDirectory = r"./"
+
+pdfFiles = os.listdir(pdfDirectory)
+expectedDocuments = ["DAM Engine - Functional Design.pdf",
+ "DAM Engine - Technical Design.pdf"]
+
+print ("##teamcity[testStarted name='PDF Generated']")
+for doc in expectedDocuments:
+ if doc not in pdfFiles:
+ print ("##teamcity[testFailed name='PDF Generated' message='{} - Not Generated']".format(doc.strip()))
+print ("##teamcity[testFinished name='PDF Generated']")
+
+
+logFiles = os.listdir(logDirectory)
+for log in logFiles:
+ name = log.strip("_Log.txt")
+ path = os.path.join(logDirectory,log)
+ print ("##teamcity[testSuiteStarted name='{}']".format(name))
+
+ fi = open(path, 'r')
+ logLines = fi.readlines()
+
+ print ("##teamcity[testStarted name='LaTeX Warnings']")
+ for line in logLines:
+ text = line.replace("'", " ")
+ text = text.replace("`", " ")
+ if "LaTeX Warning:" in line:
+ if "was:used:in:doc" not in text and "\@arrayparboxrestore" not in text and "There were multiply-defined labels" not in text and "underbar has changed" not in text and "underline has changed" not in text and 'Font shape declaration has incorrect series value' not in text and 'Package siunitx Warning: Option ' not in text:
+ print("##teamcity[testFailed name='LaTeX Warnings' message='{}']".format(text.strip()))
+
+ print ("##teamcity[testFinished name='LaTeX Warnings']")
+
+ print ("##teamcity[testStarted name='Citation Warnings']")
+ for line in logLines:
+ text = line.replace("'", " ")
+ text = text.replace("`", " ")
+ if "Package natbib Warning: Citation" in line:
+ print ("##teamcity[testFailed name='Citation Warnings' message='{}']".format(text.strip()))
+
+ print ("##teamcity[testFinished name='Citation Warnings']")
+
+
+ print ("##teamcity[testSuiteFinished name='{}']".format(name))
+ fi.close()
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/ForbiddenZoneFactor.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMMainDataflow.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/FO.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/FO.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/FO.tex (revision 3911)
@@ -0,0 +1,159 @@
+\chapter{Introduction}
+\label{chapterIntroduction}
+
+\section{Purpose and scope of this document} \label{sec:PurposeAndScope}
+
+This document contains the functional design for the \ProgramName, a computational engine for the automated calculation of the strength of dikes.
+DAM was developed by Deltares with and for STOWA for all water authorities.
+This document describes requirements and functional design of \ProgramName. So it is clear what the purpose of \ProgramName is and which functionaliry
+What will actually will be implemented depends on the prioritizing of the requirements by the clients using this \ProgramName.
+If some functionality is not (yet) needed, then that part does not need to be implemented.
+
+\subsection{Future options}
+\label{sec:FutureOptions}
+As mentioned above this document contains some options that will not be implemented in the first release, but are foreseen to be implemented in the near future. Therefore although sometimes a reference will be made to these options, these will not be described in detail yet.
+
+That applies in particular to the following subjects:
+\begin{itemize}
+ \item NWO module("Niet Waterkerende Objecten")
+ \item WBI failure mechanisms (Piping, Macrostability)
+\end{itemize}
+
+
+\section{Other system documents}
+\label{sec:SystemDocuments}
+
+The full documentation on the program comprises the following documents.
+
+\renewcommand{\arraystretch}{1.3}
+
+\begin{table}[H]
+%\caption{xxx}
+%\label{xxx}
+\begin{tabular}{|p{40mm}|p{\textwidth-40mm-24pt}|} \hline
+\textbf{Title} & \textbf{Content} \\ \hline
+\ProgramName - Architecture Overall \newline \citep{DAM_ArchitectureOverall} & Description of overall architecture of the \ProgramName and its components. \\ \hline
+\ProgramName- Functional Design (this document) \newline \citep{DAMEngine_FunctionalDesign} & Description of the requirements and functional design. \\ \hline
+\ProgramName - Technical Design\newline \citep{DAMEngine_TechnicalDesign}& Description of the implementation of the technical design of \ProgramName. \\ \hline
+\ProgramName - Technical documentation \newline \citep{DAMEngine_TechnicalDocumentation} & Description of the arguments and usage of different software components, generated from in-line comment with Doxygen. \\ \hline
+\ProgramName - Test Plan \newline \citep{DAMEngine_TestPlan} & Description of the different regression and acceptation tests, including target values. (not available yet). \\ \hline
+\ProgramName - Test Report \newline \citep{DAMEngine_TestReport} & Description of the test results (benchmarks and test scripts)(not available yet). \\ \hline
+Architecture Guidelines \newline \citep{ArchitectureGuidelines} & Architecture guidelines that are used by DSC-Deltares. \\ \hline
+Overview of data used \newline \citep{DAMDataUIEngine} & Table with data used by DAM UI and \ProgramName\\ \hline
+
+\end{tabular}
+\caption{\small \ProgramName system documents.}
+\label{table-SystemDocuments}
+\end{table}
+
+\section{Document revisions}\label{sec:DocumentRevisions}
+\subsection{Revision 0.1}
+\label{sec:Revision01}
+First concept of the document.
+\subsection{Revision 0.2} \label{sec:Revision02}
+Textual adaptations.\newline
+Assessment is removed from the requirements.
+{sec:TLDegOfCo} added.
+\subsection{Revision 0.3} \label{sec:Revision03}
+Textual and functional adaptations.\newline
+
+\chapter{Functional requirements}
+
+Main purpose of the \ProgramName is to get data from DAM Clients, use this data as calculation input and make serially calculations demanded by the DAM Client with one or more kernels and generates output. This can be broken down to the next user stories:\newline
+
+User story Design\newline
+As a user I want to adapt the geometry until given safety for stability or piping is met.
+
+User stort Operational sensors\newline
+As a user I want to make stability and/or piping calculations with the input from operational sensors.
+
+Since most requirements are needed for both user stories, the requirements are classified per theme, not per User story. The themes are: data, calculation and output.
+The requirements per Use case are given in next table.
+
+
+\section{Data}
+
+\subsection{REQ Data.Format}\label{sec:REQDataFormat}
+
+\subsubsection{Location}\label{sec:REQDataFormatLocation}
+Locations are defined by a unique name and RD coordinates.
+
+\subsubsection{Geometry}\label{sec:REQDataFormatGeometry}
+The geometry is defined by a surfaceline and characteristicpoints on this surfaceline. The surfaceline is limited by a surfaceleveloutside at the left side and surfaceline inside at the right sight.
+The left side of the geomtry is the riverside and the side of the variable waterlevel outside. The right side is the polderside (inside).
+
+\subsubsection{Subsoil}\label{sec:REQDataFormatSubsoil}
+The subsoil is defined by line shaped segments. Each segment is defined by one or more soilprofiles with a probability (sums up to 100\%). And a soilprofile describes the boundaries of the layers and their material.
+
+\subsubsection{Water pressures}\label{sec:REQDataFormatWaterpressure}
+\ProgramName can schematize water pressures for piping and stability kernels, see \autoref{sec:GenerationPorePressures}.
+Data needed for this schematization consists of waterlevels and the schematization parameter water pressure per layer.
+
+\subsection{REQ Data.Content}\label{sec:REQDataContent}
+The \ProgramName has a defined content for the data input, so DAM Clients know how to arrange the input data.
+The required data is described in xsd-files in https://repos.deltares.nl/ repos/ dam/ DamEngine/ trunk/ xsd.
+An overview of the required data for the engine in relation to DAM UI data is described in https://repos.deltares.nl/ repos/ dam/ DamOverall/ trunk/ doc/ DAM General/ OverviewDataUIAndEngine.xlsx. In this Functional design is refered to parameters mentioned in this overview by giving the \textcolor[rgb]{0.65,0.16,0}{\textsl{name}}.
+
+\section{Calculation}\label{sec:Calculation}
+
+\subsection{Kernels}\label{sec:Kernels}
+The \ProgramName provides calculations with the following stability and piping kernels:
+\begin{enumerate}
+ \item Stability; \MacroStabilityKernel
+ \item Piping; DAM-kernel piping
+ \item Piping; WBI-kernel piping
+\end{enumerate}
+
+\subsubsection{REQ Calc.Kernel22}\label{sec:REQ CalcKernel22}
+The DAM engine can make stability calculations with the \MacroStabilityKernel.
+The options used by the DAM engine are a subset of the use of that kernel and are described in \autoref{sec:UseStabKernel}.
+
+% ToDo ToDo MWDAM-1719 {sec:FODAMPipingKernel} is defined in FOWBIPipingKernel.tex but this LaTeX-file is never included.
+% Investigate if this subsection is relevant.
+\subsubsection{REQ Calc.DAMPiping}\label{sec:REQ CalcDAMPiping}
+The DAM engine can make piping calculations with the DAM-piping kernel.
+% The functional design of the DAM piping kernel is described in \autoref{sec:FODAMPipingKernel}.
+
+
+\subsubsection{REQ Calc.WBIPiping}\label{sec:REQ CalcWBIPiping}
+The DAM engine can make piping calculations with the WBI-piping kernel.
+The functional design of the DAM piping kernel is described in \autoref{sec:UseWBIPipingKernel}.
+
+
+\subsection{REQ Calc.Design.Geometry}\label{sec:REQDesignGeometry}
+The DAM engine must be able to generate new profiles (surfacelines) based on a desired Dike table heigth (DTH) and/or Factor of safety. This can be done by:
+\begin{enumerate}
+ \item Raising the crest
+ \item Reducing the gradient of the slope
+ \item Shoulder development
+\end{enumerate}
+
+The design of this geometry adeption is described in \autoref{sec:DesignGeometryAdaption}
+
+\subsection{REQ Calc.Operational.Sensor}\label{sec:REQOperationalSensor}
+The DAM Engine must be able to use sensor data as input for the generation of water pressures.
+
+\subsection{REQ Calc.Design.Excavation}\label{sec:REQDesignExcavation}
+This will not be part of the implementation of DAM Engine and therefor this paragraph has
+not yet been written.
+
+\section{Output}
+\label{sec:Output}
+
+\subsection{REQ Output.format}\label{sec:REQOutputFormat}
+\textit{}
+
+%The \ProgramName provides three types of major calculations:
+%\begin{enumerate}[A.]
+ %\item One-fold calculation: the input goes 'through' the kernel(s) and generates one main calculation answer (assessment and scenario);
+ %\item Goal-seeking calculation: the input contains one variable and a desired outcome, the answer is the variable sufficient for the goal (design);
+ %\item Time-lapsed calculation; calculations are made as time serie (operational).
+%\end{enumerate}
+%
+%More specified; the \ProgramName provides the following calculation types, so the DAM Clients can provide this functionality.
+%\begin{itemize}
+ %\item Assessment regional dikes (type A); stability and piping.
+ %\item Design of geometry, given required safety factor: Design-Geometry (type B); stability or piping.
+ %\item Design of geometry, given dimensions of excavation and required safety factor: Design-Excavation (type B) \textit{Not implemented yet.}; stability or piping.
+ %\item Operational calculation from sensor data (type C); stability or piping.
+%\end{itemize}
\ No newline at end of file
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/UpliftDitchC.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/ReduceSlope.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMComponents.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/pictures/DAMEngineComponents.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/FlowchartUpliftDitch.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/Literature.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/Literature.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/Literature.tex (revision 3911)
@@ -0,0 +1,3 @@
+\chapter{Literature} \label{chapterLiterature}
+
+\bibliography{../DAM_references/dam_references}
\ No newline at end of file
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/pictures/DAMEngineSequenceOperational.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/REQDataGenerationWater.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/REQDataGenerationWater.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/REQDataGenerationWater.tex (revision 3911)
@@ -0,0 +1,234 @@
+\chapter {REQ Generation.PorePressures} \label{sec:GenerationPorePressures}
+
+The \ProgramName can combine the hydraulic data with a subsoil scenario. The result is a schematization of the pore pressures, usable for the failure mechanisms Piping and Macrostability.
+
+\section{Conditions under which the automatic generation works} \label{sec:Conditions}
+Under certain circumstances, the kernel must be able to produce the pore pressures in the geometry. If the following circumstances are met, the pore pressures will be schematized following the guidelines [Technisch Rapport Waterspanningen bij dijken (2004)] during a high water tide.
+
+The conditions to automatically produce pore pressures are as follows:
+\begin{itemize}
+ \item Minimum of one and maximum of two aquifers;
+ \item The aquifers reach from one boundary to the other (CNS 8);
+ \item The generator only works if the high water table is on the left side.
+\end{itemize}
+
+\section{Procedure for schematisation of the pore pressures}\label{sec:procedure}
+
+The steps for the schematization of the pore pressures are:
+\begin{enumerate}
+ \item The schematisation of the phreatic plane (see \autoref{sec:PhreaPlane}).
+ \item Initial schematisation of piezometric heads (see \autoref{sec:InitialPiezoHeads}).
+ \item Checking for uplift (see \autoref{sec:CheckUplift}).
+ \item Definitive schematisation of pore pressures (see \autoref{sec:DefPorePressure}).
+\end{enumerate}
+
+\section{Schematisation of the phreatic plane}\label{sec:PhreaPlane}
+
+There are currently two different approaches to the schematisation of the position of the phreatic plane: :
+\begin{enumerate}
+ \item ExpertKnowledgeRRD
+ \item ExpertKnowledgeLinearInDike
+\end{enumerate}
+
+The schematisation method can be selected by the user in the base data (attribute: PLLineCreationMethod). The schematisation method and the associated values can be defined at the location level.
+
+The phreatic plane is referred to as Piezometric Line 1 (PL1).
+
+\subsection {ExpertKnowledgeRRD}
+The ExpertKnowledgeRDD method sets out the location of the phreatic plane at a maximum of 6 points: A to F. \autoref{fig:PL1_RRD} lists these points. The level of the phreatic plane is defined by entering a number of vertical offsets relative to the outer water level or the ground level. \Autoref{tab:OffsetRRD} lists for each point how it is determined/recorded. The location of the phreatic plane between the points is determined on the basis of linear interpolation.
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/PL1_RRD.png}
+ \caption{Schematisation Phreactic line (PL1) Macrostability inward using ExpertKnowledgeRRD}
+ \label{fig:PL1_RRD}
+\end{figure}
+
+\begin{table}[H]
+ \centering
+ \begin{tabular}{ |p{25mm} |p{100mm} |}
+ \hline
+\textbf{Punt} & \textbf{Elevation determined by} \\ \hline
+\textit{A} & Intersection of the water level with the outer slope (determined automatically) \\ \hline
+\textit{B} & Outer water level - stated offset \\ \hline
+\textit{C} & Outer water level - stated offset \\ \hline
+\textit{D} & Ground level Shoulder base inside - stated offset\\ \hline
+\textit{E} & Ground level Dike toe at polderside- stated offset\\ \hline
+\textit{F} & Intersection of polder level with ditch (is determined automatically). \\ \hline
+ \end{tabular}
+ \caption{Parameters for each schematisation point used to locate the phreatic plane in the ExpertKnowledgeRRD schematisation option}
+ \label{tab:OffsetRRD}
+\end{table}
+
+Lower levels relative to the reference point/plane are stated as positive values. When schematising a rise in the phreatic plane under the crest, the offset are stated as a negative value.
+
+When the waterlevel is higher then Z Dike top at river calculating can not be made: message is given.
+
+The determination of the intersection of the water level with the outer slope (point A in \autoref{tab:OffsetRRD})is made between the characteristic points Dike toe at river and Dike crest at river. So if the water level (high and low!) is not between or on Dike toe at river and Dike crest at river, an error must be given.\\
+
+
+\subsection {ExpertKnowledgeLineairDike}
+Here, the phreatic plane starts where the outer water level (Point A in \autoref{fig:PL1Linear} intersects the outer slope. It then continues in a straight line to point E and then to point F.
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/PL1_Lineair.png}
+ \caption{Schematisation Phreactic line (PL1) Macrostability inward using ExpertKnowledgeLineair}
+ \label{fig:PL1Linear}
+\end{figure}
+
+
+\subsection{Particular cases} \label{sec:ParticularCases}
+
+The following checks are made:
+
+\paragraph*{Free water}
+The procedure must check that the phreatic plane along the dike does not extend beyond the slope. If this the case, the location is automatically adapted to follow the surface level one centimeter lower. \\
+Free water at the polder side (right side of toe at polderside) is allowed. %Waternet creHowever the polder water level is limited by the surface level outside (right geometry boundary).%
+
+\paragraph*{No ditch, no shoulder}
+If there is no shoulder, point D will be omitted.\newline
+If there is no ditch, there are two possibilities:\newline
+1. The offset at Dike toe at polder (point E in \autoref{fig:PL1_RRD}) is defined; the offset at point E will be continued with a limit of 1 cm below the surface line.\newline
+2. The offset at Dike toe at polder (point E in \autoref{fig:PL1_RRD}) is not defined; the phreatic line at point E is equal to polder level and remains at this value until Surfacelevelinside.\newline
+
+\paragraph*{Phreatic line goes up}
+The procedure must ensure that the location of the phreatic plane is not below the stated polder level at points D and E as a result of the stated offsets. If this is the case, the location of the phreatic plane will automatically be matched to the polder level. In addition, the procedure must ensure that the phreatic plane at points D and E is not higher than at the preceding points. Point C may be higher than point B.
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/PL1PhreaGoesUp.png}
+ \caption{Adaption of phreactic line (PL1) when initial line would go up}
+ \label{fig:L1PhreaGoesUp}
+\end{figure}
+
+%In waternet creator WBI kernel:
+%\subsection{Minimum values below dike crest} \label{sec:MinimumValues}
+%The phreatic levels at points B and C is limited by user-defined minimal values:
+%\begin{itemize}
+ %\item Z$_{\text{min;crest river}}$, the minimum value below the dike top at river;
+ %\item Z$_{\text{min;crest polder}}$, the minimum value below the dike top at polder.
+%\end{itemize}
+
+%The minimum value below point B when point B does not correspond to the dike top at river must be deduced by interpolation or extrapolation between points (X$_{\text{crest river}}$; Z$_{\text{min;crest river}}$) and (X$_{\text{crest polder}}$; Z$_{\text{min;crest polder}}$).
+%
+\paragraph*{Surfaceline outside is higher than phreatic line outside}
+The determination of the intersection of the water level (point A in \autoref{tab:OffsetRRD}) with the outer slope is made between the characteristic points Dike toe at river and Dike crest at river. So if the surfacelevel left of the Dike toe at river is above the phreatic line the eventual intersections are ignored.
+If the waterheight is below Z value of Dike to at river, schematisation of the phreatic line is not possible and a validation message is given. See also ../repos/dam/DamOverall/trunk/doc/DAM/General/-OverviewDataUIAndEngine.xlsx
+
+\section {Initial schematisation of piezometric heads}\label{sec:InitialPiezoHeads}
+\ProgramName can manage a maximum of two aquifers. \ProgramName also takes the penetration layer (TAW, 2004) into account. For the time being, this option works only with 1D soil profiles. If the calculations have to be made without a penetration layer, a value of 0 should be entered (attribute: PenetrationLength).
+
+\ProgramName defines the aquifers from bottom to top (in the direction of the surface). A piezometric line (PL3) is assigned to the bottom layer (which is also an aquifer) (\autoref{fig:wsp_1WL}). The pore pressures in the penetration layer are schematised using PL2. PL4 will be allocated to any additional aquifer. \autoref{tab:piezolines} gives an overview of the various piezometric lines and associated schematisation.
+
+If several aquifers are stacked in succession one above the other, \ProgramName will allocate the same PL to all of them, assuming a hydrostatic range for the pore pressures. The separation between the aquifer and cohesive layer is then determined by the top of the highest aquifer in the stack.
+
+For the purposes of the stability calculations, \ProgramName schematises the piezometric heads in the vertical direction using linear interpolation in the soft layers. A hydrostatic range is assumed in the dike body, the soil layers where the phreatic plane is located and the aquifers.
+
+\begin{table}[H]
+ \centering
+ \begin{tabular}{ |p{25mm} |p{100mm} |}
+ \hline
+\textbf{PL} & \textbf{Description} \\ \hline
+\textit{PL1} & Phreatic line. For stability calculations with a stationary phreatic plane. The schematisation for PL1 is described in \autoref{sec:PhreaPlane}\\ \hline
+\textit{PL2} & The pore pressure at the top of the penetration layer. The PL2 is not affected by the piezometric head in the underlying aquifer and it is constant (in other words, there is no damping) over the entire width of the cross-section. The user enters the value for PL2 (attribute: HeadPL2), as well as the thickness of the penetration layer. DAM 1.0 uses the PL2 only if the thickness of the penetration layer >0 m.\newline
+Note: at present, the use of PL2 is still limited to 1D soil profiles.
+\\ \hline
+\textit{PL3} & Pore pressure in the bottom aquifer. The value can be entered (attribute: HeadPL3). If no value is entered, PL3 is considered to be the same as the outer water level stated in the scenarios (see section 2.6).
+\newline
+The value for PL3 at the inner toe (\autoref{fig:dempingfactor}) depends on the stated damping factor (attribute: DampingPL3). This damping factor expresses the degree to which PL3 is damped to PL2. Zero means no damping (PL3 is constant). And the value 1 suggests full damping to PL2 (attribute: PL2). If no value has been entered for PL2, the polder water level will be used (attribute: PolderLevel). Beyond the inner toe, the PL3 declines to the polder level at a gradient to be stated (attribute: SlopeDampingPiezometricHeightPolderSide). The PL3 then matches the polder level. A value can be entered for the gradient of this PL slope. The default value is 0. This means there is no slope.
+ \\ \hline
+\textit{PL4} & Pore pressure in an intermediate aquifer (if present). The schematisation for PL4 is similar to that described for PL3. However, PL3 should be read as PL4.\newline
+Note: Both PL3 and PL4 use the same gradient for the slope of the PL line on the polder side.
+\\ \hline
+
+ \end{tabular}
+ \caption{Overview and description of piezometric lines}
+ \label{tab:piezolines}
+\end{table}
+
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/wsp_1WL.png}
+ \caption{Schematization of the water pressures in 1 aquifer situation}
+ \label{fig:wsp_1WL}
+\end{figure}
+
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/dempingfactor.png}
+ \caption{Use of damping factor (f) and reduction of piezometric level at polder side (X) for horizontal schematization of water levels}
+ \label{fig:dempingfactor}
+\end{figure}
+
+\section {Correction for uplift}\label{sec:CheckUplift}
+The check for uplift is described in \autoref{sec:UpliftCalculation}
+
+If uplift is calculated,\ProgramName lowers the PL3 or PL4 (if present) to a value in which uplift just no longer occurs, in other words to the point at which there is an unstable equilibrium (zie \autoref{fig:redPL}).
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/redPL.png}
+ \caption{Lowering of piezometric head in the presence of uplift. \ProgramName checks for uplift starting at the inner toe and extending to the edge of the profile and adapts the piezometric head accordingly until an unstable equilibrium is attained.}
+ \label{fig:redPL}
+\end{figure}
+
+The PL3/PL4 continues from this point on with the specified slopegradient (\textcolor[rgb]{0.65,0.16,0}{\textit{SlopeDampingPiezometricHeightPolderSide}}) until polderlevel with the condition that
+PL3/PL4 is always descending from left to right.
+
+When a ditch is present Uplift is checked conform Bijlage 1 of Technisch Rapport Waterspanningen bij dijken (TAW, 2004), without the last bullit (thickness of layer under ditch is between the width of the bottom and width of the ditch).
+\ProgramName follows the flowchart of \autoref{fig:FlowchartUpliftDitch}.
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=1\textwidth]{pictures/FlowchartUpliftDitch.png}
+ \caption{Flowchart check Uplift when ditch is present.}
+ \label{fig:FlowchartUpliftDitch}
+\end{figure}
+
+Next figures are explaining the flowchart.
+
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=0.5\textwidth]{pictures/UpliftDitchA.png}
+ \caption{Uplift calculation when ditch is present, thicknes layer is larger than ditch}
+ \label{fig:UpliftDitchA}
+\end{figure}
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=0.5\textwidth]{pictures/UpliftDitchB.png}
+ \caption{Uplift calculation when ditch is present, thicknes layer is smaller than ditch}
+ \label{fig:UpliftDitchB}
+\end{figure}
+
+When uplift occurs at the location of the ditch it is possible that by deleting previous points of the PL line also uplift occurs between toe and ditch. While using the initial PL line, no uplift occurs. See \autoref{fig:UpliftDitchC}. An extra check is made for uplift between toe and ditch ("Hier weer opdrijven"')
+
+\begin{figure}[H]
+ \centering
+ \includegraphics[width=0.5\textwidth]{pictures/UpliftDitchC.png}
+ \caption{Uplift calculation between toe and ditch after uplift calculation at ditch}
+ \label{fig:UpliftDitchC}
+\end{figure}
+
+
+
+
+%A better implementation (not implemented yet) would be:
+%Correct plline 3 or 4 for uplift according to
+%TRW (Technisch Rapport Waterspanningen bij dijken) par. b1.3.4 "Stijghoogte in het eerste watervoerende pakket"
+ %- Adjust PL3/4 for all surface points from end of profile to toe of dike, so no uplift will occur in that surface point
+ %- From the point, closest to the dike, (firstAdjustedPLPoint) where this correction has been made the following has to be done
+%/ * PL3/4 will continue horizontally from firstAdjustedPLPoint over a distance L = 2* d (d is height all layers above the aquifer)
+ %* The the PL3/4 will go down in a slope of 1:50 to the PolderLevel
+ %
+
+
+
+
+\section {Definitive schematisation pore pressures}\label{sec:DefPorePressure}
+The definitive schematisation for the pore pressures is produced on the basis of the initial generation of the pore pressures and the check for uplift. This involves the straight-line interpolation of values in a horizontal direction between the various calculated tipping points in the PL lines.
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/piping1.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Sequence Operational.uxf
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Sequence Operational.uxf (revision 0)
+++ DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Sequence Operational.uxf (revision 3911)
@@ -0,0 +1,269 @@
+
+
+ 10
+
+ UMLGeneric
+
+ 90
+ 160
+ 20
+ 170
+
+
+bg=yellow
+
+
+
+ UMLGeneric
+
+ 210
+ 40
+ 140
+ 50
+
+ :Failure Mechanism
+Calculator
+bg=orange
+
+
+
+ UMLGeneric
+
+ 30
+ 40
+ 140
+ 30
+
+ :Dikes Operational
+bg=orange
+
+
+
+ UMLGeneric
+
+ 370
+ 40
+ 140
+ 50
+
+ :Geometry Creator
+bg=orange
+
+
+
+ UMLGeneric
+
+ 530
+ 40
+ 140
+ 50
+
+ :Waternet Creator
+bg=orange
+
+
+
+ UMLGeneric
+
+ 690
+ 40
+ 140
+ 50
+
+ :Failure Mechanism
+Wrappers
+bg=orange
+
+
+
+ UMLGeneric
+
+ 260
+ 160
+ 20
+ 450
+
+
+bg=yellow
+
+
+
+ Relation
+
+ 260
+ 80
+ 30
+ 100
+
+ lt=.
+ 10.0;10.0;10.0;80.0
+
+
+ Relation
+
+ 100
+ 210
+ 180
+ 30
+
+ lt=<<<-
+ 160.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 100
+ 260
+ 180
+ 30
+
+ lt=<<<-
+ 10.0;10.0;160.0;10.0
+
+
+ UMLGeneric
+
+ 420
+ 160
+ 20
+ 130
+
+
+bg=yellow
+
+
+
+ UMLGeneric
+
+ 580
+ 290
+ 20
+ 130
+
+
+bg=yellow
+
+
+
+ UMLGeneric
+
+ 740
+ 430
+ 20
+ 130
+
+
+bg=yellow
+
+
+
+ Relation
+
+ 270
+ 190
+ 170
+ 30
+
+ lt=<<<-
+ 150.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 270
+ 250
+ 170
+ 30
+
+ lt=<<<-
+ 10.0;10.0;150.0;10.0
+
+
+ Relation
+
+ 270
+ 320
+ 330
+ 30
+
+ lt=<<<-
+ 310.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 270
+ 380
+ 330
+ 30
+
+ lt=<<<-
+ 10.0;10.0;310.0;10.0
+
+
+ Relation
+
+ 270
+ 460
+ 490
+ 30
+
+ lt=<<<-
+ 470.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 270
+ 530
+ 490
+ 30
+
+ lt=<<<-
+ 10.0;10.0;470.0;10.0
+
+
+ Relation
+
+ 420
+ 80
+ 30
+ 100
+
+ lt=.
+ 10.0;10.0;10.0;80.0
+
+
+ Relation
+
+ 580
+ 80
+ 30
+ 230
+
+ lt=.
+ 10.0;10.0;10.0;210.0
+
+
+ Relation
+
+ 90
+ 60
+ 30
+ 120
+
+ lt=.
+ 10.0;10.0;10.0;100.0
+
+
+ Relation
+
+ 740
+ 80
+ 30
+ 370
+
+ lt=.
+ 10.0;10.0;10.0;350.0
+
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/SubSoilElements.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineSequenceDesign.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineActivityDesign.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Activity Assessment.uxf
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Activity Assessment.uxf (revision 0)
+++ DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Activity Assessment.uxf (revision 3911)
@@ -0,0 +1,203 @@
+
+
+ 10
+
+ Relation
+
+ 800
+ 240
+ 30
+ 80
+
+ lt=<-
+ 10.0;60.0;10.0;10.0
+
+
+ UMLObject
+
+ 650
+ 100
+ 370
+ 580
+
+ Assessment
+valign=top
+
+
+
+ UMLState
+
+ 760
+ 380
+ 110
+ 40
+
+ Create geometry
+bg=red
+
+
+
+ UMLState
+
+ 760
+ 450
+ 110
+ 40
+
+ Create Waternet
+bg=red
+
+
+
+ UMLState
+
+ 760
+ 520
+ 110
+ 40
+
+ Calculate
+with kernel
+bg=red
+
+
+
+ UMLSpecialState
+
+ 790
+ 300
+ 40
+ 40
+
+ bg=green
+type=decision
+
+
+
+ UMLSpecialState
+
+ 800
+ 160
+ 20
+ 20
+
+ type=initial
+
+
+
+ Relation
+
+ 800
+ 330
+ 110
+ 70
+
+ lt=<-
+location found
+ 10.0;50.0;10.0;10.0
+
+
+ Relation
+
+ 800
+ 410
+ 30
+ 60
+
+ lt=<-
+ 10.0;40.0;10.0;10.0
+
+
+ Relation
+
+ 800
+ 480
+ 30
+ 60
+
+ lt=<-
+ 10.0;40.0;10.0;10.0
+
+
+ Relation
+
+ 700
+ 220
+ 80
+ 420
+
+ lt=<-
+ 60.0;10.0;10.0;10.0;10.0;400.0;60.0;400.0
+
+
+ Relation
+
+ 800
+ 550
+ 30
+ 70
+
+ lt=<-
+ 10.0;50.0;10.0;10.0
+
+
+ UMLState
+
+ 760
+ 210
+ 110
+ 40
+
+ Find next
+location
+bg=red
+
+
+
+ UMLSpecialState
+
+ 970
+ 310
+ 20
+ 20
+
+ type=final
+
+
+
+ Relation
+
+ 820
+ 300
+ 170
+ 40
+
+ lt=<-
+no location found
+ 150.0;20.0;10.0;20.0
+
+
+ UMLState
+
+ 760
+ 600
+ 110
+ 40
+
+ Add outcome
+to results
+bg=red
+
+
+
+ Relation
+
+ 800
+ 170
+ 30
+ 60
+
+ lt=<-
+ 10.0;40.0;10.0;10.0
+
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/PL1PhreaGoesUp.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Sequence Assessment.uxf
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Sequence Assessment.uxf (revision 0)
+++ DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Sequence Assessment.uxf (revision 3911)
@@ -0,0 +1,269 @@
+
+
+ 10
+
+ UMLGeneric
+
+ 90
+ 160
+ 20
+ 170
+
+
+bg=yellow
+
+
+
+ UMLGeneric
+
+ 210
+ 40
+ 140
+ 50
+
+ :Failure Mechanism
+Calculator
+bg=orange
+
+
+
+ UMLGeneric
+
+ 30
+ 40
+ 140
+ 30
+
+ :Assessment Dikes
+bg=orange
+
+
+
+ UMLGeneric
+
+ 370
+ 40
+ 140
+ 50
+
+ :Geometry Creator
+bg=orange
+
+
+
+ UMLGeneric
+
+ 530
+ 40
+ 140
+ 50
+
+ :Waternet Creator
+bg=orange
+
+
+
+ UMLGeneric
+
+ 690
+ 40
+ 140
+ 50
+
+ :Failure Mechanism
+Wrappers
+bg=orange
+
+
+
+ UMLGeneric
+
+ 260
+ 160
+ 20
+ 450
+
+
+bg=yellow
+
+
+
+ Relation
+
+ 260
+ 80
+ 30
+ 100
+
+ lt=.
+ 10.0;10.0;10.0;80.0
+
+
+ Relation
+
+ 100
+ 210
+ 180
+ 30
+
+ lt=<<<-
+ 160.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 100
+ 260
+ 180
+ 30
+
+ lt=<<<-
+ 10.0;10.0;160.0;10.0
+
+
+ UMLGeneric
+
+ 420
+ 160
+ 20
+ 130
+
+
+bg=yellow
+
+
+
+ UMLGeneric
+
+ 580
+ 290
+ 20
+ 130
+
+
+bg=yellow
+
+
+
+ UMLGeneric
+
+ 740
+ 430
+ 20
+ 130
+
+
+bg=yellow
+
+
+
+ Relation
+
+ 270
+ 190
+ 170
+ 30
+
+ lt=<<<-
+ 150.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 270
+ 250
+ 170
+ 30
+
+ lt=<<<-
+ 10.0;10.0;150.0;10.0
+
+
+ Relation
+
+ 270
+ 320
+ 330
+ 30
+
+ lt=<<<-
+ 310.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 270
+ 380
+ 330
+ 30
+
+ lt=<<<-
+ 10.0;10.0;310.0;10.0
+
+
+ Relation
+
+ 270
+ 460
+ 490
+ 30
+
+ lt=<<<-
+ 470.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 270
+ 530
+ 490
+ 30
+
+ lt=<<<-
+ 10.0;10.0;470.0;10.0
+
+
+ Relation
+
+ 420
+ 80
+ 30
+ 100
+
+ lt=.
+ 10.0;10.0;10.0;80.0
+
+
+ Relation
+
+ 580
+ 80
+ 30
+ 230
+
+ lt=.
+ 10.0;10.0;10.0;210.0
+
+
+ Relation
+
+ 90
+ 60
+ 30
+ 120
+
+ lt=.
+ 10.0;10.0;10.0;100.0
+
+
+ Relation
+
+ 740
+ 80
+ 30
+ 370
+
+ lt=.
+ 10.0;10.0;10.0;350.0
+
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/pictures/DAMEngineSequenceAssessment.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/Picture1.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/LargerDikeBase.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/redPL.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/ShoulderDevelop.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DTHAdaptedGeometry.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/UseWBIPipingKernel.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/UseWBIPipingKernel.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/UseWBIPipingKernel.tex (revision 3911)
@@ -0,0 +1,128 @@
+\chapter{Use of WBI piping kernel} \label{sec:UseWBIPipingKernel}
+
+The WBI use of the piping kernel consists of three sub failure mechanisms: uplift, heave and backward erosion.
+The complete calculation is done by:
+\begin{enumerate}
+ \item The calculation of the uplift safety by determining the vertical balance of weight of the subsoil and the waterpressure at the top of the aquifer.
+\item The calculation of heave by checking the maximal gradient over the vertical waterflow at the uplift location. Heave is the vertical sand transport through the horizontal pipes towards the location of uplift breaching (the exit location.)The thickness layer is the distance where over heave occurs.
+\item The calculation of internal erosion with Sellmeijer revised.
+\item Checking the presence of sufficient horizontal seepage length (kwelweglengte)
+\item Determiniation of the piping safety factor by dividing the required seepage length by the present seepage length.
+\end{enumerate}
+
+Note that the seepage length is calculated by (XExit - XEntry) + DistanceToEntryPoint. XExit is the exit point (point where the uplift is located), XEntry is the location of the dike toe at riverside and DistanceToEntryPoint is an optional user defined value, default 0.
+
+The use by DAM of these functions is described in following paragraphs.
+
+\section{Uplift (uplift safety)}\label{sec:Uplift}
+For the uplift calculation DAM uses the DAM uplift calculation described in \autoref{sec:UpliftCalculation}
+
+%This function of the kernel is decribed in paragraph 3.3 in \citep{PipingKernel_FunctionalDesign}.
+%
+%Input of the kernel consists of:
+%
+%\begin{table}[H]
+ %\centering
+ %\begin{tabular}{|p{20mm}|p{20mm}|p{50mm}|p{50mm}|} \hline
+%\textbf{Symbol}& \textbf{Unit} & \textbf{Description} & \textbf{Value in DAM} \\ \hline
+%h$_{exit}$ & m & phreatic level at the exit point (above reference level NAP) & calculated, see \autoref{sec:PiezHeadUpliftLocation} \\ \hline
+%$\Phi _{polder}$ & m & piezometric head in the hinterland (above reference level NAP) & \\HeadPl2 \ \\ \hline
+%$\Phi _{exit}$ & m & piezometric head at the exit point (above reference level NAP) & calculated, see \autoref{sec:PiezHeadUpliftLocation} \\ \hline
+%r$_{exit}$ & & damping factor at the exit point & calculated, see \autoref{sec:PiezHeadUpliftLocation} \\ \hline
+%m$_{u}$ & - & model factor uplift & ? \\ \hline
+%D$_{cover,i}$ & m & thickness of the cover sublayer i at the exit point & calculated, see \autoref{sec:DeterminationSoilParameters} \\ \hline
+%$\sigma_{eff}$ & kN/m$^{2}$ & effective vertical stress at the bottom of the cover layer & calculated, see \autoref{sec:DeterminationSoilParameters} \\ \hline
+%$\gamma_{eff,cover,i}$ & kN/m$^{3}$ & effective volumetric weight of cover sublayer i & calculated, see \autoref{sec:DeterminationSoilParameters} \\ \hline
+%$\gamma_{water}$ & kN/m$^{3}$ & volumetric weight of water & 9.81 \\ \hline
+%$\gamma$ & m & leakage length on the landside of the dike (hinterland) & New input for DAM \\ \hline
+ %\end{tabular}
+ %\caption{Input paramaters}
+ %\label{tab:InputParametersUplift}
+%\end{table}
+%
+%Output of the kernel for the uplift safety calculation is:
+%\begin{itemize}
+ %\item Z$_u$ (limit state function value)
+ %\item FoS$_{u}$ (factor of safety)
+ %\item $\Delta \Phi _{c,u}$ (critical head difference for uplift)
+ %\item h$_{c,u}$(critical water level for uplift)
+ %\item D$_{cover,i}$ (effective thickness of the cover layer at exit point)
+ %\item $\gamma _{eff}$(effective stress at the exit point)
+ %\item h$_{exit}$(piezometric head at the exit point)
+%\end{itemize}
+
+\section{Heave}\label{sec:Heave}
+This function of the kernel is decribed in paragraph 3.4 in \citep{PipingKernel_FunctionalDesign}.
+
+In DAM is assumed that heave always occurs, until the connection to the WBI piping kernel is extended to the complete version (also adeptions in DAM UI)
+
+Input of the kernel consists of:
+
+\begin{table}[H]
+ \centering
+ \begin{tabular}{|p{20mm}|p{20mm}|p{50mm}|p{50mm}|} \hline
+\textbf{Symbol} & \textbf{Unit} & \textbf{Description} &\textbf{Value in DAM } \\ \hline
+i & - & gradient at exit point & calculated based on the damping factor \\ \hline
+i$_{c,h}$ & - & critical exit gradient & calculated based on the damping factor\\ \hline
+D$_{cover}$ & m & total thickness of the cover sublayer & calulated, see \\ \hline
+h$_{exit}$ & m NAP & piezometric head at the exit point & output kernel \\ \hline
+$\Phi _{polder}$ & m & piezometric head in the hinterland (above reference level NAP) & {\textcolor[rgb]{0.65,0.16,0}{HeadPl2}}\\ \hline
+ \end{tabular}
+ \caption{Input paramaters Heave}
+ \label{tab:InputParametersHeave}
+\end{table}
+
+Output of the kernel for the heave calculation is:
+\begin{itemize}
+ \item Z$_h$ (limit state function value)
+ \item FoS$_{h}$ (factor of safety)
+ \item h$_{c,h}$(critical water level for heave)
+ \item h$_{exit}$(piezometric head at the exit point)
+ \item i (gradient at exit point)
+\end{itemize}
+
+\section{Internal erosion (backward erosion)}\label{sec:InternalErosion}
+
+The WBI piping kernel facilitates the models Bligh, Sellmeijer both in original as revised (WTI2011)form. For now the use by DAM is restricted to Sellmeijer revised (WTI 2011)
+This function of the kernel is decribed in paragraph 3.5 in \citep{PipingKernel_FunctionalDesign}.
+
+Input of the kernel consists of:
+
+\begin{table}[H]
+ \centering
+ \begin{tabular}{|p{20mm}|p{20mm}|p{50mm}|p{50mm}|} \hline
+\textbf{Symbol}& \textbf{Unit} & \textbf{Description} & \textbf{Value in DAM} \\ \hline
+h & m & river water level (above reference level NAP) & WaterHeight (when using scenarios) \\ \hline
+h$_{exit}$ & m & phreatic level at the exit point (above reference level NAP) & calculated
+\\ \hline
+m$_{p}$ & - & model factor piping & 1.0 \\ \hline
+$\gamma_{water}$ & kN/m$^{3}$ & volumetric weight of water & 9.81 \\ \hline
+r$_{c}$ & - & reduction factor providing the fraction of the blanket thickness by which the total head difference is reduced due to hydraulic resistance in the vertical exit channels & 0.3 \\ \hline
+D$_{cover}$ & m & total thickness of the cover layer at the exit point & calculated \\ \hline
+$\gamma_{sub,particals}$ & kN/m$^{3}$ & submerged volumetric weight of sand particles & 16.5 \\ \hline
+$\theta_{Sellmeijer,rev.}$ & deg & bedding angle for Sellmeijer original & 37 \\ \hline
+$\eta$ & - & White’s drag coefficient & 0.25 \\ \hline
+d$_{70}$ & m & 70\%-fractile of the aquifer’s grain size distribution & from soilmaterials.mdb \\ \hline
+d$_{70m}$ & m & d70-reference value in Sellmeijer, revised & 2.08E-4 \\ \hline
+$\kappa$ & m$^{2}$ & intrinsic permeability & calculated with k, $\nu_{water}$ and g \\ \hline
+k & m/s & hydraulic conductivity (Darcy) & from soilmaterials.mdb \\ \hline
+$\nu_{water}$ & m$^{2}$ /s & kinematic viscosity of water at 10 degrees Celsius & 1.33 E-6 \\ \hline
+g & m/s$^{2}$ & gravitational constant & 9.81 \\ \hline
+D & m & thickness of the aquifer & calculated \\ \hline
+L & m & seepage length & calculated \\ \hline
+ \end{tabular}
+ \caption{Input paramaters Internal erosion}
+ \label{tab:InputParametersInternalErosion}
+\end{table}
+
+Output of the kernel for the internal erosion calculation is:
+
+\begin{itemize}
+ \item Z$_p$ (limit state function value)
+ \item FoS$_{p}$ (factor of safety)
+ \item h$_{c,p}$(critical water level for uplift)
+ \item $\Delta$ H$_{c}$ (critical head difference)
+ \item h - $_{exit}$- r$_{c}$D$_{cover}$(reduced head drop this the head drop which is reduced by the head drop over the exit channel)
+\end{itemize}
+
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/PL1_Lineair.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/HydraulicShortcut.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Components.uxf
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Components.uxf (revision 0)
+++ DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Components.uxf (revision 3911)
@@ -0,0 +1,420 @@
+
+
+ 8
+
+ UMLGeneric
+
+ 808
+ 1232
+ 232
+ 64
+
+ symbol=component
+
+Surfaceline Designer Height
+group=12
+
+
+
+ UMLGeneric
+
+ 160
+ 448
+ 208
+ 64
+
+ symbol=component
+
+Design calculation
+group=5
+
+
+
+ UMLGeneric
+
+ 168
+ 80
+ 192
+ 64
+
+ symbol=component
+
+Assessment calculation
+group=4
+
+
+
+ UMLDeployment
+
+ 472
+ 920
+ 520
+ 208
+
+ Calculation Runners
+group=10
+
+
+
+ UMLDeployment
+
+ 144
+ 40
+ 240
+ 352
+
+ Dikes Assessment
+group=4
+
+
+
+ UMLGeneric
+
+ 808
+ 1312
+ 232
+ 64
+
+ symbol=component
+
+Surfaceline Designer Slope
+group=12
+
+
+
+ UMLGeneric
+
+ 808
+ 1472
+ 232
+ 64
+
+ symbol=component
+
+Surfaceline Designer Shoulder
+group=12
+
+
+
+ UMLGeneric
+
+ 488
+ 960
+ 232
+ 64
+
+ symbol=component
+
+Failure mechanism Calculation Runner
+group=10
+
+
+
+ UMLDeployment
+
+ 144
+ 1184
+ 280
+ 368
+
+ Failure mechanism wrappers
+group=1
+
+
+
+ UMLDeployment
+
+ 144
+ 408
+ 240
+ 352
+
+ Dikes Design
+group=5
+
+
+
+ UMLGeneric
+
+ 168
+ 1224
+ 232
+ 64
+
+ symbol=component
+
+Inward Macrostability wrapper
+group=1
+
+
+
+ UMLGeneric
+
+ 168
+ 1304
+ 232
+ 64
+
+ symbol=component
+
+Outward Macrostability wrapper
+group=1
+
+
+
+ UMLGeneric
+
+ 168
+ 1384
+ 232
+ 64
+
+ symbol=component
+
+Piping
+group=1
+
+
+
+ UMLGeneric
+
+ 808
+ 1392
+ 232
+ 64
+
+ symbol=component
+
+Surfaceline Designer NWO
+(NEW)
+group=12
+
+
+
+ UMLGeneric
+
+ 168
+ 920
+ 232
+ 64
+
+ symbol=component
+
+Scripting engine
+(NEW)
+
+
+
+ UMLGeneric
+
+ 496
+ 1224
+ 232
+ 64
+
+ symbol=component
+
+Geometry creator
+group=11
+
+
+
+ UMLGeneric
+
+ 496
+ 1304
+ 232
+ 64
+
+ symbol=component
+
+Waternet creator
+group=11
+
+
+
+ UMLDeployment
+
+ 424
+ 408
+ 240
+ 352
+
+ Dikes NWO Calculation
+(NEW)
+group=6
+
+
+
+ UMLGeneric
+
+ 440
+ 448
+ 200
+ 64
+
+ symbol=component
+
+NWO calculation
+group=6
+
+
+
+ UMLDeployment
+
+ 120
+ 0
+ 592
+ 784
+
+ Main modules
+
+
+
+ UMLDeployment
+
+ 120
+ 880
+ 976
+ 704
+
+ Supporting modules
+
+
+
+ Relation
+
+ 416
+ 776
+ 24
+ 120
+
+ lt=[=]-[<]
+ 10.0;10.0;10.0;130.0
+
+
+ UMLGeneric
+
+ 736
+ 960
+ 232
+ 64
+
+ symbol=component
+
+Design Calculation Runner
+group=10
+
+
+
+ UMLGeneric
+
+ 448
+ 80
+ 192
+ 64
+
+ symbol=component
+
+Operational calculation
+group=8
+
+
+
+ UMLDeployment
+
+ 432
+ 40
+ 232
+ 352
+
+ Dikes Operational
+group=8
+
+
+
+ UMLGeneric
+
+ 488
+ 1040
+ 232
+ 64
+
+ symbol=component
+
+Operation Calculation Runner
+group=10
+
+
+
+ UMLGeneric
+
+ 736
+ 1040
+ 232
+ 64
+
+ symbol=component
+
+Probabilistic Calculation Runner
+group=10
+
+
+
+ UMLDeployment
+
+ 480
+ 1184
+ 280
+ 368
+
+ General modules
+group=11
+
+
+
+ UMLDeployment
+
+ 784
+ 1184
+ 288
+ 368
+
+ Surfaceline designers
+group=12
+
+
+
+ Relation
+
+ 928
+ 1120
+ 24
+ 80
+
+ lt=[=]-[<]
+ 10.0;10.0;10.0;80.0
+
+
+ Relation
+
+ 616
+ 1120
+ 24
+ 80
+
+ lt=[=]-[<]
+ 10.0;10.0;10.0;80.0
+
+
+ Relation
+
+ 264
+ 1040
+ 224
+ 160
+
+ lt=[=]-[<]
+ 260.0;10.0;10.0;180.0
+
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/GISArea.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/pictures/DAMEngineDataModelMain.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineActivityAssessment.pdf
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineActivityAssessment.pdf (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineActivityAssessment.pdf (revision 3911)
@@ -0,0 +1,63 @@
+%PDF-1.4
+%����
+6 0 obj
+<>stream
+x��YMo7���=t�$�_Ǵh�!���Iv��$Ē���w���r
+�R�B�
+�7;��y;CR���;땋���ݏ�ݻ�s7(o��������c��{�m:��tF���>u������A-��W8�����vPz�v�y���u����+��v88Y����SI�u|��wQi��"��j�� ���`�J��Rn������ɨ�#%|Of2Xtl<4~3Ke��o3��t�WiP��}�\Ql�f���7��
+N���1���V]#?�a�&��E����Rm���z�����6�-~6�M8�|�je0��~��W��q�kM��/��Ӻ[�M��zF#���P���2��Wκ�lzC\�Bp=.�u�G��VR\�4����"�Y`KԌE�cn�>�+�"@�a]��������d�Xj�Fy�,�;�l{�I�>��41nQT��ҭHh��M�n��!��n!�2+~9͑����1y���W��4��@�rI�
+8)3
+JG�6O��5�6S��TM�s5���I�|\�1�|ͣ����l�m�f�&me�M�f�+��q�䒄\����wTN&�'o>n�j��c�"y�O[��c�vq����\�"i�7��N�FF�M�N�~u�tL�$��u �5.9F�t��+A�U�A��B�![�fY�L��'�Y�e�q�.�>Ӽ��y���ُ�ɛ�ј��M�o�n�r=N�SD�:_>K�䍨�:Wt�<�ο1p�R�c=�D)�dB�h�`�H>�0�S
+m>� ���SB5��@�tc(��Gn��OI>�a�OY�)7��-,/ǵ�K���s~��f\<�7�� �z3�:���q�A���߬�KU d�q�x��F��2�@K�'Z���h�!��J(�C��2��Ђ�Ђ�Je�
+-��Aƿ�Nf��Q
+�4Ӑ�~��W���vA�Z#����6V�Vd�Q�Z=mlBg��5���6���%�q
+m���(c�mh���2�вTCˢL� -[>�ڗ��?bm���d�2�n�]���^���n7�A=13bOO?߉ͯ�-�˷rh���徎��1�$H�3~|���C�r�8���V��z��X�S��m1!�C�3фX۞��n���W�\!�����{㫒�t Q�g��&9غշ��?��=L�|6՝y^�f�~�Y��oh�|�Y�Txʦv�����Tr6[%Giu�}�,/H�2� e���$�Z�h�F�a��"LQ��0�
+���+?΄� �\a�{��.�T�a\ �J��#�uՠ(�=�'��#�0F�}eBE�<͉�r�3N�9'b�D�H!OR�8���V?'���O�ǡ�����|� ����O7�q�q2���'=���غ�ckg[#��#56����&g���O��>�\9!�.��� Ю̳&Ԭ �)c�5�
+endstream
+endobj
+8 0 obj
+<>/Font<>>>/Parent 7 0 R/MediaBox[0 0 410 620]>>
+endobj
+3 0 obj
+<>
+endobj
+1 0 obj
+<>
+endobj
+2 0 obj
+<>
+endobj
+5 0 obj
+<>
+endobj
+4 0 obj
+<>
+endobj
+7 0 obj
+<>
+endobj
+9 0 obj
+<>
+endobj
+10 0 obj
+<>
+endobj
+xref
+0 11
+0000000000 65535 f
+0000001833 00000 n
+0000001863 00000 n
+0000001745 00000 n
+0000001913 00000 n
+0000001888 00000 n
+0000000015 00000 n
+0000001938 00000 n
+0000001534 00000 n
+0000001989 00000 n
+0000002034 00000 n
+trailer
+<]/Root 9 0 R/Size 11>>
+%iText-5.4.1
+startxref
+2188
+%%EOF
Index: DamEngine/tags/23.1.1/doc/buildDocs.bat
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/buildDocs.bat (revision 0)
+++ DamEngine/tags/23.1.1/doc/buildDocs.bat (revision 3911)
@@ -0,0 +1,24 @@
+REM This is the order of dependencies of the files.
+
+mkdir "BuildLogs"
+
+cd ".\Dam Engine - Functional Design"
+pdflatex "DAM Engine - Functional Design.tex"
+bibtex "DAM Engine - Functional Design"
+pdflatex "DAM Engine - Functional Design.tex"
+pdflatex "DAM Engine - Functional Design.tex"
+pdflatex "DAM Engine - Functional Design.tex" > DamEngineFunctionalDesign_Log.txt
+xcopy DamEngineFunctionalDesign_Log.txt "..\BuildLogs" /Y
+xcopy *.pdf ..\ /Y
+
+cd "..\Dam Engine - Technical Design"
+pdflatex "DAM Engine - Technical Design.tex"
+bibtex "DAM Engine - Technical Design"
+pdflatex "DAM Engine - Technical Design.tex"
+pdflatex "DAM Engine - Technical Design.tex"
+pdflatex "DAM Engine - Technical Design.tex" > DamEngineTechnicalDesign_Log.txt
+xcopy DamEngineTechnicalDesign_Log.txt "..\BuildLogs" /Y
+xcopy *.pdf ..\ /Y
+
+cd ..
+python parseLogs.py
\ No newline at end of file
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/FOWBIPipingKernel.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/FOWBIPipingKernel.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/FOWBIPipingKernel.tex (revision 3911)
@@ -0,0 +1,21 @@
+\chapter{Use of WBI piping kernel} \label{sec:FODAMPipingKernel}
+
+Functional designs
+The functional design of the kernel is described in \citep{WBIFOPipingKernel}
+The functional design of the WBI waternet creator is described in paragraph 11.3 if \citep{
+%To be translated
+De gedetailleerde toets conform WBI omvat de deelmechanismen: opbarsten (eng: uplift), heave en terugschrijdende
+erosie (backward erosion).
+De gehele piping berekening bestaat uit:
+\begin{enumerate}
+ \item De berekening van de opbarstveiligheid komt neer op het bepalen van het verticale evenwicht
+van de grondspanning en de waterspanning ter plaatse van de onderkant van de deklaag.
+\item De berekening van heave (verticaal zandtransport door de opgebarsten laag) komt neer op een
+controle op het maximaal optredende verhang over de verticaal gerichte grondwaterstroom
+ter plaatse van de opgebarsten deklaag. Daarbij is de dikte van de deklaag de afstand
+waarover heave optreedt.
+\item De bepaling van de aanwezigheid van voldoende horizontale kwelweglengte.
+\item De bepaling van de veiligheidsfactor door de benodigde kwelweglengte te delen op de aanwezige kwelweglengte.
+\end{enumerate}
+
+Ad 1. In DAM wordt de benodige opdrijfveiligheid gegeven als \textit{\textcolor[rgb]{0.65,0.16,0}UpliftCriterionPiping}.Alleen wanneer er niet aan benodigde veiligheidsfactor wordt voldoen, wordt de piping berekening voortgezet.
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/pictures/DAMComponents.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/MoveDitch.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineSequenceAssessment.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/RRDPeat.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Work/Python integration in Dam Engine.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Work/Python integration in Dam Engine.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Work/Python integration in Dam Engine.tex (revision 3911)
@@ -0,0 +1,149 @@
+\documentclass{deltares_report}
+\usepackage{listings}
+\usepackage[titletoc]{appendix}
+\usepackage{tikz}
+\usetikzlibrary{shapes.geometric}
+\newcommand{\warningsign}{\tikz[baseline=-.75ex] \node[shape=regular polygon, regular polygon sides=3, inner sep=0pt, draw, thick, red] {\textbf{!}};}
+
+%-----------------------------------------------
+\lstset{ %
+ basicstyle=\footnotesize, % the size of the fonts that are used for the code listings
+}
+
+\begin{document}
+ \pagestyle{empty}
+ \cleardoublepage
+ %
+
+ \newcommand{\DamEngine}{Dam Engine\xspace}
+ \newcommand{\Python}{Python integration\xspace}
+
+ \title{\Python in Dam Engine}
+ \author{John Bokma}
+ \partner{-}
+ \subtitle{Pre Design: Research the options}
+ \projectnumber{}
+ \client{Deltares - DSC}
+ \contact{}
+ \documentid{-}
+ \reference{}
+ \classification{-}
+
+ \date{July 2021}
+ \version{0.1}
+
+ \keywords{\DamEngine, \Python}
+
+ \references{-}
+
+ \summary{This document contains a description of the research into the \Python in \DamEngine. \newline
+ \newline
+ \textbf{\footnotesize{Samenvatting - NL}} \newline
+ Dit document bevat een beschrijving van onderzoek naar de Python integratie in de \DamEngine.}
+
+ \versioni{0.1}
+ \datei{July 2021}
+ \authori{John Bokma}
+ \organisationi{Deltares}
+ \revieweri{Tom The}
+ \approvali{Hans van Putten}
+ \publisheri{Deltares}
+ \status{draft}
+ \disclaimer{This is a draft report, intended for discussion purposes only.
+ No part of this report may be relied upon by either principals or third parties.}
+
+ \deltarestitle
+
+%------------------------------------------------------------------------------
+
+\chapter{Introduction}
+\label{sec:Introduction}
+
+\section{About this document}
+\label{sec:PurposeAndScope}
+
+This document describes the research done into the Python integration in the Dam Engine.
+
+\section{Versions}
+\label{sec:Versions}
+This is a description of the different versions of this document.
+\subsection{Version 0.1} \label{sec:Version0_1}
+Initial version.
+
+%------------------------------------------------------------------------------
+\chapter{Solution as used in Delta Shell}
+\label{sec:SolutionDeltaShell}
+
+Delta Shell currently offers \Python in its products.
+It even offers the integration in two different ways.
+
+First, they opened up their entire data structure and classes for third party access by exposing that structure and those classes publicly.
+We will call this the open structure method for now.
+
+Secondly, they used Iron Python (a special version of Python) to enable scripting directly, even from within the UI of Delta Shell.
+We will call this the Iron Python method for now.
+
+\section{Open structure methode}
+\label{sec:OpenStructureMethod}
+
+The open structure method gives full access to the entire \DamEngine.
+Therefore it is most flexible from the view point of the initial script writer.
+The writer can do (almost) any thing that's thinkable and script-able.
+Also any version, dialect and/or libraries of Python can be used in order to create the scripts.
+
+With this openness comes its greatest possible downfall too.
+Any change in data or method(s) in the \DamEngine that are used in a script will most likely cause that script to fail.
+Or even worse, it will alter the outcome of an existing script without the script user being aware of this.
+
+Writing scripts will demand a great deal of knowledge about the \DamEngine, its data-structure and classes.
+The only form of support that can be offered is proving the technical documentation.
+This lists all used classes, properties and methods.
+
+Pro's:
+\begin{itemize}
+ \item Any Python version/dialect can be used by the end user.
+ \item Anything the user can think of and that can be scripted using Python is possible.
+\end{itemize}
+
+Con's:
+\begin{itemize}
+ \item It will be hard if not impossible to provide support beyond proving documentation.
+ \item When structure/classes changes, existing scripts will most likely fail.
+ \item The user has access to all our data and classes.
+ \item Hard to roll out when Python itself needs to be distributed as well.
+\end{itemize}
+
+\section{Iron Python method}
+\label{sec:IronPythonMethod}
+
+The Iron Python method uses a special version of Python called Iron Python.
+This is a predefined package which offers scripting in Python style but it limits the possibilities to libraries included in that package.
+This package is (at this moment) not extensible.
+
+The Iron Python method needs to be configured to gain access to the \DamEngine.
+Data, methods and classes from within \DamEngine need to be exposed to the Iron Python method in order to be used by it.
+From the view point of the script writer, this has advantages (a guaranteed interface)
+as well as disadvantages (not everything will be exposed).
+
+Using Iron Python offers the possibility to provide the script writer with an editor (or scripting host) that supports code completion.
+This will support the script writer a great deal in speed as well as keeping the learning curve for getting to know the \DamEngine data-structure far less steep.
+Also, from this editor predefined libraries can be accessed and used to fulfill frequently used tasks.
+
+Pro's:
+\begin{itemize}
+ \item Scripts will keep running even when the data structure and/or classes in the \DamEngine are changed.
+ \item An editor (or scripting host) can be provided with real time development support (code completion for methods and properties).
+ \item In the future, the editor could even be incorporated with a Dam UI (current one/future one/user created one).
+ \item Predefined libraries for "standard" usages could be provided.
+ \item Can be rolled out with ease.
+ \item We can control access to those parts of the \DamEngine we really like to expose whilst keeping other parts hidden.
+\end{itemize}
+
+Con's:
+\begin{itemize}
+ \item Only the Iron Python libraries can be used. They do not allow the use of other popular Python libraries such as Num.py and Sci.py.
+ \item Scripting is only possible for exposed data and/or class items.
+\end{itemize}
+
+\end{document}
+
Index: DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Data Model Main.uxf
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Data Model Main.uxf (revision 0)
+++ DamEngine/tags/23.1.1/doc/UML Diagrams/DAM Engine Data Model Main.uxf (revision 3911)
@@ -0,0 +1,226 @@
+
+
+ 10
+
+ UMLClass
+
+ 190
+ 10
+ 260
+ 190
+
+ Input
+--
++ DamProjectType
++ DamProjectCalculationSpecification
+
+
+
+
+
+ UMLClass
+
+ 590
+ 540
+ 210
+ 190
+
+ ProjectData
+--
+
+
+
+
+ UMLClass
+
+ 200
+ 820
+ 260
+ 190
+
+ Output
+--
+
+
+
+
+ UMLClass
+
+ 550
+ 0
+ 260
+ 100
+
+ Location
+--
++ SoilSegment
+
+
+
+ Relation
+
+ 440
+ 30
+ 130
+ 40
+
+ lt=<-
+m1=*
+ 110.0;10.0;10.0;20.0
+
+
+ Relation
+
+ 300
+ 190
+ 310
+ 400
+
+ lt=<-
+m1=1
+ 10.0;10.0;10.0;380.0;290.0;380.0
+
+
+ Relation
+
+ 300
+ 610
+ 310
+ 230
+
+ lt=<-
+m1=1
+ 10.0;210.0;10.0;10.0;290.0;10.0
+
+
+ UMLClass
+
+ 550
+ 120
+ 260
+ 100
+
+ SoilSegment
+--
++ List<SoilProfile>
+
+
+
+ UMLClass
+
+ 550
+ 250
+ 260
+ 100
+
+ Soil
+--
++
+
+
+
+ Relation
+
+ 440
+ 70
+ 130
+ 110
+
+ lt=<-
+m1=*
+ 110.0;90.0;10.0;10.0
+
+
+ Relation
+
+ 440
+ 100
+ 130
+ 210
+
+ lt=<-
+m1=*
+ 110.0;190.0;10.0;10.0
+
+
+ UMLClass
+
+ 770
+ 810
+ 260
+ 120
+
+ CalculationResult
+--
++ CalculationId
++ Location
++ SubsoilScenario
++ LoadScenario
++ RegionalScenario
+
+
+
+
+ UMLClass
+
+ 880
+ 990
+ 260
+ 130
+
+ CalculationMessage
+--
++ type
++ message
+
+
+
+ Relation
+
+ 450
+ 860
+ 340
+ 40
+
+ lt=<-
+m1=*
+ 320.0;10.0;10.0;10.0
+
+
+ Relation
+
+ 790
+ 920
+ 110
+ 140
+
+ lt=<-
+m1=*
+ 90.0;110.0;10.0;110.0;10.0;10.0
+
+
+ Relation
+
+ 440
+ 140
+ 130
+ 300
+
+ lt=<-
+m1=*
+ 110.0;280.0;10.0;10.0
+
+
+ UMLClass
+
+ 550
+ 390
+ 260
+ 100
+
+ SoilProfile
+--
++ List<Soil>
+
+
+
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/pictures/DAMEngineActivityDesign.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/piping6.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineDataModelMain.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/DAM Engine - Technical Design.tex
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/DAM Engine - Technical Design.tex (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/DAM Engine - Technical Design.tex (revision 3911)
@@ -0,0 +1,1139 @@
+\documentclass{deltares_report}
+\usepackage{listings}
+\usepackage[titletoc]{appendix}
+%-----------------------------------------------
+\lstset{ %
+ basicstyle=\footnotesize, % the size of the fonts that are used for the code listings
+}
+
+\begin{document}
+\pagestyle{empty}
+\cleardoublepage
+%
+
+\newcommand{\ProgramName}{DAM Engine\xspace}
+\newcommand{\kernel}{failuremechanism kernel\xspace}
+\newcommand{\MacrostabilityKernel}{Macrostability kernel\xspace}
+\newcommand{\DGeostability}{D-Geo Stability 18.1 kernel\xspace}
+\newcommand{\DStability}{D-Stability\xspace}
+\newcommand{\StixWriter}{Stix File Writer\xspace}
+\title{\ProgramName}
+\subtitle{Technical Design}
+\projectnumber{1210702-000}
+\client{Deltares - Geo engineering DKS}
+\reference{1210702-000-GEO-0004}
+\classification{-}
+\author{Tom The, John Bokma}
+\partner{-}
+\contact{tom.the@deltares.nl, john.bokma@deltares.nl}
+\documentid{-}
+\organisationi{Deltares}
+\publisheri{Deltares - DSC}
+
+\date{Sep. 2022}
+\version{0.6}
+
+\keywords{Dike, safety assessment, design, software, macro stability, piping}
+
+\summary{This document contains the technical design for \ProgramName, a software module that computes the strength of a complete dikering with respect to several failure mechanisms, such as macro stability and piping.\newline
+\newline
+\textbf{\footnotesize{Samenvatting}} \newline
+Dit document bevat het technisch ontwerp voor \ProgramName, een software module die een gebruiker in staat stelt om voor een dijktraject berekeningen uit te voeren voor verschillende faalmechanismen, waaronder macrostabiliteit en piping.}
+
+\versioni{0.5}
+\datei{Nov 2018}
+\authori{Tom The}
+\revieweri{John Bokma \newline Andr\'e Grijze}
+\approvali{Maya Sule}
+\status{draft}
+
+\versioni{0.6}
+\datei{July 2022}
+\authori{John Bokma, Tom The}
+\revieweri{Walter Austmann}
+\approvali{Maya Sule}
+\status{draft}
+\disclaimer{This is a draft report, intended for discussion purposes only. No part of this report may be relied upon by either principals or third parties.}
+
+\deltarestitle
+
+
+%------------------------------------------------------------------------------
+\chapter{Introduction}
+\label{chapterIntroduction}
+
+\section{Purpose and scope of this document} \label{sec:PurposeAndScope}
+
+This document contains the technical design for the \ProgramName, a computational engine for the automated calculation of the strength of dikes.
+DAM was developed by Deltares with and for STOWA for all water authorities.
+This document describes the full intended architecture of the \ProgramName.
+What will actually will be implemented depends on the requirements of the clients using this \ProgramName.
+If some functionality is not (yet) needed, then that part does not need to be implemented.
+
+\subsection{Future options}
+\label{sec:FutureOptions}
+As mentioned above this document contains some options that will not be implemented in the first release, but are foreseen to be implemented in the near future. Therefore although sometimes a reference will be made to these options, these will not be described in detail yet.
+
+That applies in particular to the following subjects:
+\begin{itemize}
+ \item NWO module("Niet Waterkerende Objecten")
+\end{itemize}
+\section{Other system documents}
+\label{sec:SystemDocuments}
+
+The full documentation on the program comprises the following documents.
+
+\renewcommand{\arraystretch}{1.3}
+
+\begin{table}[H]
+%\caption{xxx}
+%\label{xxx}
+\begin{tabular}{|p{40mm}|p{\textwidth-40mm-24pt}|} \hline
+\textbf{Title} & \textbf{Content} \\ \hline
+\ProgramName - Architecture Overall \newline \citep{DAM_ArchitectureOverall} & Description of overall architecture of the \ProgramName and its components. \\ \hline
+\ProgramName- Functional Design \newline \citep{DAMEngine_FunctionalDesign} & Description of the requirements and functional design. \\ \hline
+\ProgramName - Technical Design (this document) \newline \citep{DAMEngine_TechnicalDesign}& Description of the implementation of the technical design of \ProgramName. \\ \hline
+\ProgramName - Technical documentation \newline \citep{DAMEngine_TechnicalDocumentation} & Description of the arguments and usage of different software components, generated from in-line comment with Doxygen. \\ \hline
+\ProgramName - Test Plan \newline \citep{DAMEngine_TestPlan} & Description of the different regression and acceptation tests, including target values. \\ \hline
+\ProgramName - Test Report \newline \citep{DAMEngine_TestReport} & Description of the test results (benchmarks and test scripts). \\ \hline
+Architecture Guidelines \newline \citep{ArchitectureGuidelines} & Architecture guidelines that are used by DSC-Deltares. \\ \hline
+\end{tabular}
+\caption{\small \ProgramName system documents.}
+\label{table-SystemDocuments}
+\end{table}
+
+\section{Document revisions}
+\label{sec:DocumentRevisions}
+
+\subsection{Revision 0.1}
+\label{sec:Revision01}
+First concept of the document.
+
+\subsection{Revision 0.2}
+\label{sec:Revision02}
+Adapted based on reviews of this document by Jan Noort and Andr\'e Grijze.
+
+\subsection{Revision 0.3}
+\label{sec:Revision03}
+Adapted based on review of this document by John Bokma.
+
+\subsection{Revision 0.4}
+\label{sec:Revision04}
+The interface description of the failure mechanism wrapper is updated. Furthermore, a chapter is added on adding a new Failure Mechanism.
+
+\subsection{Revision 0.5}
+\label{sec:Revision05}
+A chapter is added on Failure Mechanism implementations. Furthermore, a description is added of the implementation of the Macrostability kernel.
+
+\subsection{Revision 0.6}
+\label{sec:Revision06}
+Updated for the options of the Macrostability kernel.
+
+%------------------------------------------------------------------------------
+\chapter{System Architecture} \label{chapterSystemArchitecture}
+
+This chapter contains diagrams describing the modules and submodules of the \ProgramName and how they interact.
+In \autoref{chapterModuleDescription} a short description of each module/submodules is given.
+
+\section{DAM components} \label{sec:DamComponents}
+
+\ProgramName is part of the whole DAM system that contains several components.
+Please see \autoref{fig-DamComponents} for an overview of the components of DAM.
+In \citep{DAM_ArchitectureOverall} a description of the overall architecture of the DAM system can be found.
+
+\begin{figure}[H]
+ \begin{center}
+ \includegraphics[width=15cm]{pictures/DamComponents.pdf}
+ \end{center}
+
+ \caption{\small \ProgramName and its components.}
+ \label{fig-DamComponents}
+\end{figure}
+
+The arrows illustrate the dependencies of the components.
+
+\section{\ProgramName data flow}
+\label{sec:ProgramNameDataFlow}
+Please see \autoref{fig-DAMMainDataflow} for an overview of the data flow within the DAM system.
+
+\begin{figure}[H]
+ \begin{center}
+ \includegraphics[width=15cm]{pictures/DAMMainDataflow.pdf}
+ \end{center}
+
+ \caption{\small \ProgramName and its components.}
+ \label{fig-DAMMainDataflow}
+\end{figure}
+
+The red arrows illustrate the dataflow between the main DAM components. \newline
+As can be seen the data exchange between the \ProgramName and the \kernel (bottom of the picture) is done through the API that is defined by the \kernel.
+The data exchange between the \ProgramName and the DAM client (top of the picture) is done through XML files (one for input and one for output), which are well defined by XML schemas (XSD's).
+\section{\ProgramName components}
+\label{sec:DAMEngineComponents}
+
+The \ProgramName itself also consists of several modules.
+These can be seen in see \autoref{fig-DAMEngineComponents}
+
+All of the submodules inside the Main Modules are completely independent.
+All of the submodules inside the Supporting Modules are also independent.
+But all these submodules can be used by each of the main modules.
+The arrows show the allowed dependencies.
+
+\begin{figure}[H]
+ \begin{center}
+ \includegraphics[width=16cm]{pictures/DAMEngineComponents.pdf}
+ \end{center}
+
+ \caption{\small \ProgramName and its components.}
+ \label{fig-DAMEngineComponents}
+\end{figure}
+
+\section{\ProgramName sequence and activity diagrams} \label{sec:DAMEngineSequenceActivityDiagrams}
+In this section the sequence diagrams, showing the use of the submodules are shown.
+For each sequence diagram a corresponding activity diagram is also shown
+
+\subsection{Dikes assessment}
+The Dike assessment module is discontinued.
+
+\subsection{Dikes operational}
+\begin{figure}[H]
+ \begin{center}
+ \includegraphics[width=15cm]{pictures/DAMEngineSequenceOperational.pdf}
+ \end{center}
+ \caption{\small \ProgramName Operational sequence diagram.}
+ \label{fig-DAMEngineSequenceOperational}
+\end{figure}
+
+\begin{figure}[H]
+ \begin{center}
+ \includegraphics[width=8cm]{pictures/DAMEngineActivityOperational.pdf}
+ \end{center}
+ \caption{\small \ProgramName Operational activity diagram.}
+ \label{fig-DAMEngineActivityOperational}
+\end{figure}
+
+\subsection{Dikes design}
+\begin{figure}[H]
+ \begin{center}
+ \includegraphics[width=15cm]{pictures/DAMEngineSequenceDesign.pdf}
+ \end{center}
+ \caption{\small \ProgramName Design sequence diagram.}
+ \label{fig-DAMEngineSequenceDesign}
+\end{figure}
+
+\begin{figure}[H]
+ \begin{center}
+ \includegraphics[width=8cm]{pictures/DAMEngineActivityDesign.pdf}
+ \end{center}
+ \caption{\small \ProgramName Design activity diagram.}
+ \label{fig-DAMEngineDesignAssessment}
+\end{figure}
+
+\subsection{Dikes NWO calculation}
+This is not yet to be implemetend in \ProgramName and therefore this paragraph has not yet been written.
+
+%------------------------------------------------------------------------------
+\chapter{Architectural Choices} \label{chapterArchitecturalChoices}
+\section{Architecture guidelines}
+\label{sec:ArchitectureGuidelines}
+
+Within Deltares, DSC, a document is being written about Archtitecture Guidelines \citep{ArchitectureGuidelines}.
+Although it is still a work in progress \ProgramName should adhere to those guidelines.
+More specific guidelines are added in the following sections of this chapter.
+
+\section{Design principles} \label{sec:DesignPrinciples}
+These are the main design principals to maintain during the \ProgramName development.
+\begin{itemize}
+ \item No circular references between objects.
+ When it is really unavoidable, then do it through a generic interface (e.g.\ IParentObject)
+ \item The calculation will support parallellization.
+ So do not use global variables and avoid using statics.
+ \item Failure mechanisms will be connected through wrapper classes, which will share a common IFailureMechanism interface
+ \item Surfaceline designer classes will share a common ISurfacelineDesigner interface
+ \item The \ProgramName must provide progress information of the calculation, so clients of the \ProgramName can show a progressbar
+ \item The \ProgramName must provide the possiblity to abort a calculation within a reasonable timespan.
+ \item There should be no User Interface elements shown anytime during the calculation.
+\end{itemize}
+
+\section{Programming environment} \label{sec:ProgrammingEnvironment}
+The \ProgramName will be developed in C\# with the .NET 4.6.1 framework. The development environment will be Visual Studio 2019.
+
+\section{Error handling} \label{sec:ErrorHandling}
+Errors within the \ProgramName are handled through the standard exception handling of the .NET framework. Error messages must contain as much information as possible, so a user can trace back the error to the input data. \newline
+Errorhandling with a \kernel is done through the mechanism that is supplied by the API of the specific kernel. \newline
+Errorhandling with DAM Client is done by passing the error messages as part of the output XML file. \newline
+In fact it is the same mechanism that is used for exchanging the regular data (input and output), as shown in \autoref{fig-DAMMainDataflow}.
+\newline
+\newline
+The \ProgramName should be able to issue the error messages in different languages.
+In the first implementation only the 2 following languages will be supported:
+\begin{itemize}
+ \item Dutch (NL)
+ \item English (US)
+\end{itemize}
+For translations, the standard Windows mechanism with language resource dll's will be used.
+Note: the current implementation of DAM uses another mechanism for translations, that will not be applied here, because it is dependent on the DSL (Delta Shell Light) library, which will not be used for the \ProgramName.
+
+\section{Libraries and components} \label{sec:ExternalLibrariesAndComponents}
+\ProgramName uses other libraries and components.
+
+For now we foresee only the use of the following libraries:
+\begin{itemize}
+ \item Failure mechanisms.
+ \item Deltares.StixFileWriter (to be able to produce .stix files)
+ \item Deltares.StixFileReader (to be able to read .stix files to be able to use 2D profiles)
+\end{itemize}
+
+Other libraries may be used under the condition that they are open source and free components, that are free to redistribute.
+A second demand is that a new library must be available in a 64 bit version too.
+This to enable a possible switch to a full 64 bit version of the kernel.\newline
+All libraries should be listed in a manifest accompanying the release of \ProgramName. The list should also specify under which license each specific library is distributed.
+
+\Note: \ProgramName does no longer uses the DSL (Delta Shell Light) library.
+
+
+\subsection{Failure mechanisms} \label{sec:FailureMechanisms}
+The failure mechanisms are treated as external libraries.
+Some failure mechanisms were part of the source of the original DAM program.
+With the new architecture of \ProgramName this will no longer be the case.
+These failure mechanisms will be placed in a DAM failure mechanisms library, that is not part of \ProgramName anymore.
+The following failure mechanisms are currently supported by the original DAM program:
+\begin{itemize}
+ \item Piping Bligh (not opensource).
+ \item Piping Sellmeijer VNK (not opensource).
+ \item Piping Sellmeijer 4 forces (not opensource).
+ \item Piping Sellmeijer Revised (WBI).
+ \item Macrostability inward
+ \item Macrostability outward (new).
+\end{itemize}
+
+\Note: Piping Sellmeijer VNK is a pure 32 bit program which can not be made available in 64 bit (bar a complete rewrite).
+In case a 64 bit version is required, this failure mechanism should be discontinued.
+
+%------------------------------------------------------------------------------
+\chapter{Data Model} \label{chapterDataModel}
+This chapter contains diagrams describing the main data objects of the \ProgramName and their relation to each other.
+In \autoref{chapterDataDescription} a short description of these data objects is given.
+
+\section{Main Data Model} \label{sec:MainDataModel}
+
+The main data model can be seen in see \autoref{fig-DAMEngineDataModelMain}
+It is not fully worked out, but just a global overview.
+The details will be filled in when programming the \ProgramName.
+This is because we do not intend to write a big upfront design.
+\begin{figure}[H]
+ \begin{center}
+ \includegraphics[width=15cm]{pictures/DAMEngineDataModelMain.pdf}
+ \end{center}
+
+ \caption{\small \ProgramName main data model.}
+ \label{fig-DAMEngineDataModelMain}
+\end{figure}
+
+
+
+\section{Location} \label{sec:Location}
+
+The data model of the Location class can be seen in see \autoref{fig-DAMEngineDataModelLocation}
+
+\begin{figure}[H]
+ \begin{center}
+ \includegraphics[width=12cm]{pictures/DAMEngineDataModelLocation.pdf}
+ \end{center}
+
+ \caption{\small \ProgramName Location object.}
+ \label{fig-DAMEngineDataModelLocation}
+\end{figure}
+
+%------------------------------------------------------------------------------
+\chapter{Data Description} \label{chapterDataDescription}
+
+\section{Type enumerations} \label{sec:TypeEnumerations}
+\subsection{MainMechanismType}
+The following main failure mechanisms are implemented.
+\begin{itemize}
+ \item Macrostability inward.
+ \item Macrostability outward.
+ \item Piping.
+\end{itemize}
+
+\section{Scenarios} \label{sec:Scenarios}
+The verb Scenarios is widely (ab)used within DAM. It is good to define in which context scenarios are used and how they are to be called. Simply using the word scenario is not enough.
+Within DAM we have 2 types of scenarios:
+\begin{itemize}
+ \item Subsoil scenario.
+ \item Design scenario.
+\end{itemize}
+
+\subsection{Subsoil scenario}
+\label{sec:SubSoilScenario}
+Used as part of the stochastic subsoil schematization.
+A subsoil scenario defines a possible 1D- or 2D-profile that applies to a certain location.
+
+\subsection{Design scenario}
+\label{sec:DesignScenario}
+Used for Design calculation.
+In a design calculation a new surfaceline is designed for a location, based on a target failure factor (e.g. due to new requirements), or load (e.g. a higher waterlevel).
+
+\section{Main Data Model} \label{sec:MainDataModelDescription}
+
+\subsection{Input}
+\paragraph*{DamProjectType}
+The following Dam project types are supported
+\begin{itemize}
+ \item Operational
+ \item Design
+ \item NWO (not yet implemented)
+\end{itemize}
+
+\paragraph*{DamProjectCalculationSpecification}
+This class specifies which failuremechanism is to be calculated and it also contains the specific options for the selected mechanism (e.g.\ which calculation model)
+\paragraph*{Locations}
+This is a collection of locations, with each location containing the location specific data.
+\paragraph*{Soil Segments}
+This is a collection of soil segments, with each segment containing the subsoil data for a specific failure mechanism.\textbf{}
+\paragraph*{Soils}
+This is a collection of soils, with each soil containing the soil parameters needed for the calculation of all failure mechanisms.\textbf{}
+
+\subsection{Output}
+\paragraph*{CalculationResults}
+A calculation result holds the result for a specific location, a specific failure mechanism, and a specific subsoil scenario of a specific segment defined in the location data.
+\paragraph*{CalculationMessages}
+These are all the message that are generated by the calculation. A message must contain as much information as possible to trace back the information tho the input data (e.g.\ a specific location, a specific failure mechanism, and a specific subsoil scenario of a specific segment defined in the location data).
+
+\section{Location} \label{sec:LocationDescription}
+\paragraph*{SoilSegment}
+A soil segment contains the subsoil data for a specific failure mechanism.
+\paragraph*{SurfaceLine}
+A surfaceline describes the dike profile in a specific location. In the Design calculation it can also be the new dike profile, which can meet design criteria in a specific design scenario.
+\paragraph*{WaternetOptions}
+The options that support the creation of a waternet in a specific location.
+\paragraph*{DesignOptions}
+The options that will be used in the Design calculation (e.g.\ how to design a shoulder when needed).
+\paragraph*{SensorData}
+The sensor data can be used to define a waternet based on live sensor data. This sensor data holds information about ID and location of the sensor. The actual sensor readings are defined as timeseries readings for each sensor in each location.
+\paragraph*{DesignScenario}
+Used for Design calculation. A design scenario contains the following items:
+\begin{itemize}
+ \item Riverlevel low
+ \item Riverlevel high
+ \item Dike table height
+ \item Required safety factor for each specified failure mechanism
+ \item Uplift criterium for each specified failure mechanism
+ \item Waternet options for each specified failure mechanism
+\end{itemize}
+\paragraph*{IFailureMechanismOptions}
+Specific options for each location for each failure mechanism.
+%------------------------------------------------------------------------------
+\chapter{Module Description} \label{chapterModuleDescription}
+
+\section{\ProgramName main modules} \label{sec:DAMEngineMainModules}
+
+\subsection{Design Dikes}
+This module performs an design calculation for all types of dikes.
+This module offers two types of analysis, \textit{No Adaption} and \textit{Adapt Geometry}.
+
+\paragraph*{Design calculation, No Adaption}
+This is the main submodule of the primary design calculation.
+This submodule contains the main loop of the calculation.
+The calculations are performed with the data given as is.
+
+\paragraph*{Design calculation, Adapt Geometry}
+This is the main submodule of the primary design calculation.
+This submodule contains the main loop of the calculation.
+In this option,
+calculations are performed and then checked whether the required safety is met.
+If the safety requirement is met,
+the calculation for that item stops and returns its results.
+When it is not, the geometry is adapted
+(see \todo{describe geometry adaptions})
+until the safety requirement is met or possibilty to adapt further.
+
+\subsection{Calamity module}
+This module (also known as the Operational module) performs a time series based calculation for all types of dikes.
+
+\paragraph*{Time series based calculation}
+This is the main submodule of the time series based calculation.
+This submodule contains the main loop of the calculation.
+
+\section{\ProgramName supporting modules} \label{sec:DAMEngineSupportingModules}
+\subsection{Failure mechanism wrapper interface}
+\label{sec:FailureMechanismWrapperInterface}
+For each \kernel a specific wrapper will be written. This wrapper must implement a specific interface, so the \ProgramName can support the use of the \kernel.
+The interface that must be implemented is IFailureMechanism.\newline
+Example:
+Lets say that for the failure mechanism piping we have 3 kernels: Bligh, Sellmeijer and VNK.
+Then for each of these kernels a calculation wrapper has to be written.\newline
+Another example:
+\MacrostabilityKernel has the ability to calculate the failure mechanism macrostability inwards.
+In this case 1 wrapper is needed for this single kernel.\newline
+The next methods are defined in the IFailureMechanism interface
+\begin{itemize}
+ \item Prepare()
+ \item Validate()
+ \item Execute()
+ \item Design()
+ \item PostProcess()
+ \item RegisterProgressFeedback()
+ \item RegisterAbortCheck()
+\end{itemize}
+
+Next to that, each wrapper can have properties that hold data that are specific to the failure mechanism.\newline
+Example:
+\MacrostabilityKernel needs parameters specifying the grid, tangent lines etc. These can be passed as properties to the wrapper directly.\newline
+
+\subsubsection{Prepare}
+\label{sec:Prepare}
+The purpose of this method is to fill a dataobject that implements the IKernelDataInput interface. This dataobject will be needed for the other methods in this interface. The kernel input will be based on the general dam kernel input, the possible addiotional kernel properties and when required calculations in order to determine certain input. Furthermore it initializes the kernel data output (IKernelDataOutput). \newline
+\texttt{
+ /// \newline
+ /// Prepares the failure mechanism input based on general dam kernel input and failure mechanism specific properties. \newline
+ /// \newline
+ /// The general dam kernel input. \newline
+ /// The number of the current iteration \newline
+ /// The kernel data input. \newline
+ /// The kernel data output. \newline
+ /// \newline
+ /// Result of the prepare \newline
+ /// \newline
+ PrepareResult Prepare(DamKernelInput damKernelInput, int iterationIndex, out IKernelDataInput damKernelInput, out IKernelDataOutput kernelDataOutput); \newline
+ }
+\newline
+This method returns:
+\newline
+\texttt{
+ public enum PrepareResult \newline
+ \{ \newline
+ Successful, \newline
+ Failed, \newline
+ NotRelevant \newline
+ \}; \newline
+ }
+\newline
+The method has the following parameters:
+\begin{itemize}
+ \item \texttt{DamKernelInput damKernelInput}: the main input data object; it contains data from the \ProgramName.
+ \item \texttt{IKernelDataInput damKernelInput}: in this object the data is filled that is needed by the specific \kernel; it will be passed to the \kernel as input; each \kernel wrapper will have its own implementation of IKernelDataInput.
+ \item \texttt{IKernelDataOutput kernelDataOutput}: in this object all the output of the \kernel is stored; it is also used for intermediate results; each \kernel wrapper will have its own implementation of IKernelDataOutput.
+\end{itemize}
+
+\subsubsection{Validate}
+\label{sec:Validate}
+\texttt{ /// \newline
+ /// Validates the kernel data input. \newline
+ /// \newline
+ /// The kernel data input. \newline
+ /// The kernel data output. \newline
+ /// The messages. \newline
+ /// \newline
+ /// Number of errors that prevent a calculation \newline
+ /// \newline
+ int Validate(IKernelDataInput kernelDataInput, IKernelDataOutput kernelDataOutput, out List messages); \newline}
+The purpose of this method is to validate the data that will be used as input for the failure mechanism.\newline
+It returns an integer:\newline
+0: no errors. A calculation is possible. It is possible that there are warning messages. \newline
+> 0: number of error messages that prevent a calculation. In this case, the calculation result (as part of the IKernelDataOutput) will be set to reflect this.\newline
+This method has the following parameters:
+\begin{itemize}
+ \item \texttt{IKernelDataInput kernelDataInput}: kernel input data.
+ \item \texttt{IKernelDataOutput kernelDataOutput}: kernel output data.
+ \item \texttt{List messages}: a list of messages produced by the validation
+\end{itemize}
+
+\subsubsection{Execute}
+\label{sec:Execute}
+\texttt{ /// \newline
+ /// Performs a failure mechanism calculation based on the input. \newline
+ /// \newline
+ /// The kernel data input. \newline
+ /// The kernel data output. \newline
+ /// The messages. \newline
+ void Execute(IKernelDataInput kernelDataInput, IKernelDataOutput kernelDataOutput, out List messages); \newline
+}
+This method performs the actual calculation of the failure mechanism. \newline
+This method has the following parameters:
+\begin{itemize}
+ \item \texttt{IKernelDataInput kernelDataInput}: kernel input data.
+ \item \texttt{IKernelDataOutput kernelDataOutput}: kernel output data.
+ \item \texttt{List messages}: a list of messages produced by the validation
+\end{itemize}
+Each \kernel wrapper will have its own implementation of IKernelDataOutput.
+
+\subsubsection{Design}
+\label{sec:Design}
+This method implements a design calculation. Based on certain design parameters (e.g. target failure factor, new load parameters, design strategies, etc.) a new design is made for the input data (e.g. a new surfaceline).
+This method has the following parameters:
+\begin{itemize}
+ \item \texttt{IKernelDataInput kernelDataInput}: kernel input data.
+ \item \texttt{IKernelDataDesignInput kernelDataInput}: design input.
+ \item \texttt{IKernelDataOutput kernelDataOutput}: kernel output data.
+ \item \texttt{IKernelDataDesignOutput kernelDataOutput}: design output; it contains the adapted input data (a.g. a new designed surfaceline) and other design results (e.g. number of iterations needed, success or failure etc.).
+ \item \texttt{List messages}: a list of messages produced by the design.
+\end{itemize}
+Based on the given criteria a new design is determined, which will meet the required criteria. If such a design is not possible, that will be reported back.
+
+
+\subsubsection{PostProcess}
+\label{sec:PostProcess}
+\texttt{ /// \newline
+ /// Fills the dam result based on the kernel output. \newline
+ /// \newline
+ /// The dam kernel input. \newline
+ /// The kernel data output. \newline
+ /// The result message. \newline
+ /// The design results. \newline
+ void PostProcess(DamKernelInput damKernelInput, IKernelDataOutput kernelDataOutput, string resultMessage, out List designResults); \newline
+}This method has the following parameters
+\begin{itemize}
+ \item \texttt{DamKernelInput damKernelInput}: the main dam input data object; it contains data from the \ProgramName.
+ \item \texttt{IKernelDataOutput kernelDataOutput}: kernel output data.
+ \item \texttt{string resultMessage}: this describes the result of the calculation.
+ \item \texttt{DesignResult designResult}: the main dam output data object.
+\end{itemize}
+This method fills the \ProgramName Output object with the results of the \kernel (IKernelDataOutput).
+\subsubsection{RegisterProgressFeedback}
+\label{sec:RegisterProgressFeedback}
+This method registers a callback function into the \kernel wrapper that can report back progress status from the \kernel wrapper to the calling application. The calling application provides the callback function that should be called.
+\subsubsection{RegisterAbortCheck}
+\label{sec:RegisterAbortCheck}
+This method registers a callback function into the \kernel wrapper. The calling application provides the callback function that should be called. If the function reports back that an abort was requested, the \kernel should abort the calculation and return to the calling application with an appropriate error message.
+
+\subsection{Failure mechanism wrapper implementations}
+For now the next three implementations of failure mechanism wrappers are foreseen. In the future more can be added. Note also that for a specific failure mechanism multiple implementations can be created. E.g. Piping:
+\begin{itemize}
+ \item piping Bligh
+ \item piping Sellmeijer 2 forces
+ \item piping Sellmeijer 4 forces
+ \item piping VNK model
+\end{itemize}
+
+\subsubsection*{Macrostability inwards}
+Calculation wrapper for Macrostability inward.
+Note that (as already mentioned above) for each specific kernel implementation for a failure mechanism, a separate wrapper has to be build (e.g.\ Slope/W and \MacrostabilityKernel)
+\subsubsection*{Macrostability outwards}
+Calculation wrapper for Macrostability outward (future).
+\subsubsection*{Piping}
+Calculation wrapper for Piping.
+\subsection{Surfaceline designers}
+A collection of surfaceline designers to support the design calculation.
+Each designer should adhere to the ISurfaceLineDesigner interface.
+\subsubsection*{Surfaceline Designer Height}
+Adapts the surfaceline by adding extra height to the dike crest.
+\subsubsection*{Surfaceline Designer Slope}
+Adapts the surfaceline by changing the slope of the dike on the inside.
+\subsubsection*{Surfaceline Designer Shoulder}
+Adapts the surfaceline by adding a shoulder or enlarging the shoulder on the inside of the dike.
+\subsubsection*{Surfaceline Designer NWO}
+Adapts the surfaceline by adding a NWO on a specific place in the surfaceline.
+\subsubsection{Calculation Runner}
+\paragraph*{Failure mechanism Calculation Runner}
+This submodule calculates a specific failure mechanism by calling the IFailureMechanism interface of the wrapper implementation.
+\subsubsection*{Design Calculation Runner}
+This submodule performs a design calculation for a specific failure mechanism by calling the IFailureMechanism interface and several surfaceline designers through their ISurfacelineDesigner interface.
+\subsubsection*{Operational Calculation Runner}
+This submodule can perform a calculation based on sensor readings (as time-series).
+The load on the systems (the waternet) will be based on those sensor readings. This can be used in operational systems like DamLive.
+\subsubsection*{Probabilistic Calculation Runner}
+This submodule performs a probabilistic calculation for a specific location and failure mechanism.
+The outcome is a failure probability for that location and failure mechanism.
+\subsection{General submodules}
+\subsubsection*{Geometry creator}
+This submodule combines a surfaceline with a subsoil scenario.
+The output is a geometry that can be used by the failure mechanisms to perform a calculation.
+\subsubsection*{Waternet creator}
+A waternet describes the waterpressures in the dike embankment.
+The waterpressures are a result of the load on the system (outer waterlevel and polderlevel).
+This submodule determines the waternet that will be used by the failure mechanism kernels.
+At first only the current DAM implementation will be used as a waternet creator.
+Later on new implementations can be made and applied.
+E.g.\ specific for each failure mechanism, or an implementation based on a numerical model like DgFlow.
+\subsubsection{Scripting engine}
+To enable advanced users to experiment with how the \ProgramName works a Python scripting engine is implemented as a submodule.
+The scripting engine has acces to the data model and the submodules through well defined interfaces.
+
+%------------------------------------------------------------------------------
+\chapter{Programming Interface} \label{chapterProgrammingInterface}
+This is the definition of the programming interface.
+The only way to communicate to the \ProgramName is through this interface.
+In the assembly Deltares.DamEngine.Interface.dll a class hass been defined: \texttt{Interface}, which provides the properties and methods which can be used to interact with the \ProgramName.
+
+\section{Initialization}
+\label{sec:Initializion}
+
+\texttt{
+\newline
+ /// \newline
+ /// Initializes a new instance of the class. \newline
+ /// \newline
+ /// Xml string containing the model input. \newline
+ public EngineInterface(string modelInput) \newline
+ }
+\newline
+The class has to be instantiated with an (XML) string which adheres to the XSD definition of the inputfile for the \ProgramName (See \autoref{app:DamInput}).
+
+\section{Validation}
+\label{sec:Validation}
+\texttt{
+\newline
+ /// \newline
+ /// Validates the model. \newline
+ /// \newline
+ /// Validation messages in an XML string \newline
+ public string Validate() \newline
+ }
+\newline
+This will validate the model and returns the messages in an XML string which adheres to the XSD definition of a message list (See \autoref{app:Messages}).
+\section{Calculation}
+\label{sec:Calculation}
+\texttt{
+\newline
+ /// \newline
+ /// Performs the calculation. \newline
+ /// \newline
+ /// The output of the calculation in an XML string \newline
+ public string Run() \newline
+ }
+\newline
+This will perform the calculation of the model and returns an XML string which adheres to the XSD definition of the output of the \ProgramName (See \autoref{app:DamOutput}).
+\section{Interaction}
+\label{sec:Interaction}
+
+The \ProgramName interacts with the calling application through delegates. The following delegates are used by the \ProgramName: \newline
+\texttt{
+\newline
+ /// \newline
+ /// Sends the current progress status \newline
+ /// \newline
+ /// The progress; this is a number between 0 and 1. \newline
+ public delegate void ProgressDelegate(double progress); \newline
+ \newline
+ /// \newline
+ /// Sends log message \newline
+ /// \newline
+ /// The log message. \newline
+ public delegate void SendMessageDelegate(LogMessage logMessage); \newline
+\newline
+ /// \newline
+ /// Check if a user abort is requested \newline
+ /// \newline
+ /// true if user requested an abort; else false \newline
+ public delegate bool UserAbortDelegate(); \newline
+}
+\newline
+These delegates can be assigned to the properties of Interface: \newline
+\texttt{
+ public ProgressDelegate ProgressDelegate \newline
+ public SendMessageDelegate SendMessageDelegate \newline
+ public UserAbortDelegate UserAbortDelegate \newline
+}
+
+%------------------------------------------------------------------------------
+\chapter{XML Serialization} \label{chapterXmlSerialization}
+
+\section{Generating serialization code}
+\label{sec:GeneratingSerializationCode}
+
+For the XML serialization a Visual Studio Tool is used. This tool XSD.exe creates objects based on XML schema definitions (*.xsd). To use this tool the following steps should be taken:
+\begin{itemize}
+ \item Start the Developer Command Prompt (for VS2015) and go to the folder containing the XSD's.
+ \item Create the classes by running the batchfile "GenerateClasses.bat". This generates 2 source files containing the generated objects (DamInput.cs and DamOutput.cs).
+ \item The 2 source files are then copied to the correct locations in the source tree, so they can be compiled.
+\end{itemize}
+The batchfile contains the following lines: \newline
+\texttt{REM Start the Developer Command Prompt (for VS2015) and go to this directory. Then start this batchfile.}\newline
+\texttt{xsd /c /l:cs /n:Deltares.DamEngine.Io.XmlInput DamInput.xsd}\newline
+\texttt{copy DamInput.cs ..\textbackslash src\textbackslash Deltares.DamEngine.Io\textbackslash DamInput.cs}\newline
+\texttt{xsd /c /l:cs /n:Deltares.DamEngine.Io.XmlOutput DamOutput.xsd}\newline
+\texttt{copy DamOutput.cs ..\textbackslash src\textbackslash Deltares.DamEngine.Io\textbackslash DamOutput.cs}\newline
+\newline
+The classes in the generated source files can be serialized into XML strings using the .NET library class XmlSerializer, which is part of the System.Xml.Serialization assembly. \newline
+The following classes are used for transferring the Dam Engine data model into the serializer objects and back:
+\begin{itemize}
+ \item FillDamFromXmlInput
+ \item FillXmlInputFromDam
+ \item FillDamFromXmlOutput
+ \item FillXmlOutputFromDam
+\end{itemize}
+
+\section{Changing the XSD definition}
+\label{sec:ChangingTheXsdDefinition}
+
+When the interface has to be changed because parameters are added, changed or removed you can do that as follows:
+\begin{itemize}
+ \item Change the XSD.
+ \item Regenerate the serializer objects.
+ \item Adapt the transfer objects.
+\end{itemize}
+\emph{Note: DO NOT manually change the code of the generated objects DamInput.cs and DamOutput.cs, because the changes will be lost when these files are regenerated!}
+
+%------------------------------------------------------------------------------
+\chapter{Adding a Failure Mechanism} \label{chapterAddingFailureMechanism}
+Adding a new failure mechanism to \ProgramName is something that should be releative easy to do. The architecture of \ProgramName has been setup in a way that all failure mechanism specific code is put as much as possible in 1 place.
+
+When a new failure mechanism is to be implemented, several steps have to be taken.
+\begin{itemize}
+ \item Add Failure Mechanism Wrapper (this is the main place for all failure mechanism specific code).
+ \item Create an Instance of a Failure Mechanism Wrapper.
+ \item Add Failure Mechanism Specific Data to Data Model.
+ \item Add Failure Mechanism Specific Data to XML Input.
+ \item Add Failure Mechanism Specific Data to XML Output.
+\end{itemize}
+
+In the following sections the steps are illustrated with the piping Bligh Failure mechanism.
+
+\section{Add Failure Mechanism Wrapper}
+\label{sec:AddFailureMechanismWrapper}
+Create a Failure Mechanism Wrapper that conforms to the Failure Mechanism Wrapper interface as described in \autoref{sec:FailureMechanismWrapperInterface}. The implementation of the wrapper for Piping Bligh can be found in the class \newline
+Deltares.DamEngine.Calculators.KernelWrappers.DamPipingBligh.
+
+\section{Create an Instance of the Failure Mechanism Wrapper}
+\label{sec:CreateInstanceFailureMechanismWrapper}
+To be able to use the Failure Mechanism wrapper an instance has to be instantiated. For all failure mechanisms this is done in \newline Deltares.DamEngine.Calculators.KernelWrappers.Common.KernelWrapperHelper.CreateKernelWrapper().
+
+\section{Add Failure Mechanism Specific Data to Data Model}
+\label{sec:AddFailureMechanismSpecificDataToDataModel}
+This is only needed if the data that is already implemented in the \ProgramName is not enough to meet the necessary input data for the failure mechanism kernel. Or if more result data has to be added to accommodate the passing of the failure mechanism output. For piping Bligh e.g. the Soil parameter Soil.PermeabKx has been added (among other parameters) as input. As output the output class PipingDesignResults has been added.
+
+\section{Add Failure Mechanism Specific Data to XML Input}
+\label{sec:AddFailureMechanismSpecificDataToXmlInput}
+This is only needed when the data model has been changed (see \autoref{sec:AddFailureMechanismSpecificDataToDataModel}) to accommodate more input properties. To change the input XML definition, the DamInput.xsd definition or one of its dependent xsd's has to be adapted (see \autoref{app:DamInput}). Also the reader and writer routines have to be adapted. This can be done in the class \newline
+Deltares.DamEngine.Interface.FillDamFromXmlInput.
+
+\section{Add Failure Mechanism Specific Data to XML Output}
+\label{sec:AddFailureMechanismSpecificDataToXmlOutput}
+This is only needed when the data model has been changed (see \autoref{sec:AddFailureMechanismSpecificDataToDataModel}) to accommodate more output properties. To change the output XML definition, the DamOuput.xsd definition or one of its dependent xsd's has to be adapted (see \autoref{app:DamOutput}). Also the reader and writer routines have to be adapted. This can be done in the class \newline
+Deltares.DamEngine.Interface.FillXmlOutputFromDam.
+%------------------------------------------------------------------------------
+\chapter{Failure Mechanism Implementations}
+\label{sec:FailureMechanismImplementations}
+
+\section{Piping Bligh}
+\label{sec:PipingBligh}
+TODO...
+
+\section{Piping Sellmeijer 4 Forces}
+\label{sec:PipingSellmeijer4Forces}
+TODO...
+
+\section{Piping Sellmeijer VNK}
+\label{sec:PipingSellmeijerVNK}
+TODO...
+
+\section{Piping Sellmeijer Revised (WBI)}
+\label{sec:WBIPipingSellmeijerRevised}
+TODO...
+
+\section{Macrostability Inwards/Outwards}
+\label{sec:MacrostabilityInwards}
+The macrostability kernel is used to support these failure mechanisms.
+A Functional Design \citep{MacroStabilityReqAndFD22} and a Technical Design \citep{MacroStabilityKernel_TechnicalDesign} is available. \newline
+Currently only a subset of this kernel will be supported from \ProgramName:
+\begin{itemize}
+ \item macrostability inwards for the model Bishop (search method Brute Force).
+ \item macrostability inwards for the model Uplift Van (search methods Brute Force and BeeSwarm).
+ \item macrostability inwards for combi model Bishop-Uplift Van (search method for Bishop part Brute Force; for the Uplift Van part search methods Brute Force and BeeSwarm).
+ \item macrostability outwards for the model Bishop (search method Brute Force).
+\end{itemize}
+
+The API of this kernel is based on an XML file that contains all the necessary data for the input of the kernel. The XML is defined with a set of XML schema's (XSD's). These XSD's can be found in chapter 2.3 of the Technical Design \citep{MacroStabilityKernel_TechnicalDesign}.
+
+\subsection{Initial implementation}
+\label{sec:InitialImplementation}
+The first implementation of the \MacrostabilityKernel will not be a full implementation. It will implement the same options that were implemented in the original Macrostability Inwards implementation (which uses the \DGeostability).\newline
+Therefore the following input options (see \autoref{sec:MappingDamEngineDataMacrostability}) will not be implemented:
+\begin{itemize}
+ \item PreconsolidationStresses
+ \item ConsolidationValues
+ \item MultiplicationFactorsCPhiForUplift
+ \item SpencerSlipPlanes
+ \item SlipPlaneConstraints
+ \item GeneticAlgorithmOptions (except for BeeSwarm)
+ \item LevenbergMarquardtOptions
+ \item Waternet creation options (defined in Location)
+\end{itemize}
+Furthermore, no Waternet Daily will be specified. This was introduced in the \MacrostabilityKernel when POP is requested.
+Also in the first implementation the waternet will be created by the \ProgramName. The waternet creator of the \MacrostabilityKernel will not be used. So the parameters used for the waternet creation do not have to be filled in when calling the \MacrostabilityKernel. Those are the parameters defined in \autoref{table-MappingDamEngineLocationMacrostability}.
+
+\subsection{Data communication between \ProgramName and \MacrostabilityKernel}
+\label{subsec:DataCommunicationStabilityKernel}
+The data is transferred from the \ProgramName to the \MacrostabilityKernel in memory to get the best performance in terms of speed.
+However, the data is written to files using the proper calculation folder in Macro Stability kernel XML format (*.skx) too.
+
+The proper calculation folder is defined as : \\
+
+\quad \textit{current project folder}\textbackslash \textit{projectname}.Calc\textbackslash \textit{failuremechanisme}\textbackslash \textit{model}\textbackslash
+
+where:\\
+\begin{itemize}
+ \item \textit{current project folder} is the folder where your project resides.
+ \item \textit{projectname} is the name of your project
+ \item \textit{failuremechanisme} is the used failure mechanism such as Stabilty or Piping.
+ \item \textit{model} is the used model such as UpliftVan or Bligh
+\end{itemize}
+
+To be able to tell what file belongs to which calculation, the following naming convention is used:
+
+\quad Loc(\textit{location name})Sce(\_\textit{scenario id})Pro(\_\textit{profile name}).skx
+
+When a Design calculation is made with possible adaption of the geometry, the name will also display the iteration index when required (the very first unadapted calculation will be named as above, when adapation is needed the iteration starts; so Ite(1) holds the first adapted geometry):
+
+\quad Loc(\textit{location name})Sce(\_\textit{scenario id})Pro(\_\textit{profile name})Ite(\_\textit{iteration index}).skx
+
+\subsection{Generating input files for \DStability}
+Older versions of \ProgramName used \DGeostability directly as kernel by generating \DGeostability input files (*.sti).
+These files were also made available to the user as they were written to the calculation folder
+(see \autoref{subsec:DataCommunicationStabilityKernel}).
+
+These *.sti files made it possible to quickly and easily open the calculations in the actual program/kernel that was used to obtain the results (\DGeostability).
+This way, checking the final input to the kernel and even recalculating the results for an individual calculation was only a few mouse clicks away.
+
+With the new \MacrostabilityKernel,
+the \ProgramName directly talks to the kernel itself,
+having no need to involve any UI program which would slow down the performance.
+However it still would be nice to be able to open,
+check and maybe even recalculate an individual calculation using such an UI.
+For this purpose,
+\DStability is the UI of choice as this is also uses the same kernel as \ProgramName does.
+
+Therefore the \ProgramName is able to write files in the format that is used by \DStability which is the *.stix format.
+The actual writing of a stix file itself is done using an external tool (\StixWriter).
+This tool takes the input as defined in the \ProgramName for the kernel
+(via the C\# wrapper interface for the \MacrostabilityKernel)
+and writes the file at the specified place (i.e. the calculation folder).
+Note that the resulting slip plane is added to the stix-file rather than just presenting the input.
+Main reason for this is that \DStability does not support \textit{Uplift Van} with search method \textit{Brute Force}.
+So it will never be able to reproduce the kernel results as found with \ProgramName.
+By adding the resulting slip plane and changing the search method to \textit{Single Circle}, \DStability can reproduce the result.
+
+For this reason, the \StixWriter is implemented in the post processing of the results.
+
+\subsection{Mapping of the \ProgramName data}
+\label{sec:MappingDamEngineDataMacrostability}
+The \MacrostabilityKernel has to be filled with input, that can be obtained from the \ProgramName data. In the following tables a mapping of the needed data to the \ProgramName data is defined. The data is contained in the classes DamKernelInput and DamMacroStabilityInput.
+\begin{table}[H]
+ \small
+ \begin{tabular}{|p{60mm}|p{\textwidth-60mm-24pt}|} \hline
+ \textbf{Macrostability} StabilityModel & \textbf{\ProgramName} DamInput.xsd \\ \hline
+ MoveGrid & Fixed value: TRUE (default) \\ \hline
+ MaximumSliceWidth & Fixed value: 1.0 (default) \\ \hline
+ SearchAlgorithm & DamMacroStabilityInput -> FailureMechanismParametersMStab -> MStabParameters -> SearchMethod \\ \hline
+ ModelOption & DamMacroStabilityInput -> FailureMechanismParametersMStab -> MStabParameters -> Model \\ \hline
+ Orientation & DamMacroStabilityInput -> FailureMechanismParametersMStab -> MStabParameters -> GridPosition \\ \hline
+ \hline
+ SoilModel -> Soils & DamKernelInput -> Location -> SoilList (See \autoref{table-MappingDamEngineSoilsMacrostability})\\ \hline
+ SoilProfile & DamKernelInput -> SubSoilScenario -> SoilProfile2D \\ \hline
+ SurfaceLine & DamKernelInput -> Location -> SurfaceLine \\ \hline
+ Location & DamKernelInput -> Location (See \autoref{table-MappingDamEngineLocationMacrostability})\\ \hline
+ PreconsolidationStresses & DO-NOT-IMPLEMENT \\ \hline
+ UniformLoads & generated (based on Location -> StabilityOptions -> Trafficload) \\ \hline
+ ConsolidationValues & DO-NOT-IMPLEMENT \\ \hline
+ MultiplicationFactorsCPhiForUplift & DO-NOT-IMPLEMENT \\ \hline
+ Waternets & generated \\ \hline
+ SpencerSlipPlanes & DO-NOT-IMPLEMENT \\ \hline
+ UpliftVanCalculationGrid & generated \\ \hline
+ SlipPlaneConstraints & DO-NOT-IMPLEMENT (See \autoref{table-MappingDamEngineSlipPlaneConstraintsMacrostability}) \\ \hline
+ GeneticAlgorithmOptions & Only BeeSwarm for Uplift Van \\ \hline
+ LevenbergMarquardtOptions & DO-NOT-IMPLEMENT \\ \hline
+\end{tabular}
+ \caption{\small Mapping of the \MacrostabilityKernel data to the \ProgramName.}
+ \label{table-MappingDamEngineDataMacrostability}
+\end{table}
+\begin{table}[H]
+ \small
+ \begin{tabular}{|p{70mm}|p{\textwidth-70mm-24pt}|} \hline
+ \textbf{Macrostability} Soil & \textbf{\ProgramName} Soil \\ \hline
+ AbovePhreaticLevel & AbovePhreaticLevel \\ \hline
+ BelowPhreaticLevel & BelowPhreaticLevel \\ \hline
+ DilatancyType & DilatancyType \\ \hline
+ Cohesion & Cohesion \\ \hline
+ FrictionAngle & FrictionAngle \\ \hline
+ RatioCuPc & RatioCuPc \\ \hline
+ StrengthIncreaseExponent & StrengthIncreaseExponent \\ \hline
+ OCR & OCR \\ \hline
+ ShearStrengthModel & ShearStrengthModel \\ \hline
+ \end{tabular}
+ \caption{\small Mapping of the \MacrostabilityKernel Soils to the \ProgramName Soils.}
+ \label{table-MappingDamEngineSoilsMacrostability}
+\end{table}
+The parameters defined in the following table for Location are all parameters that are used by the waternet creator of the \MacrostabilityKernel. They will not yet be implemented (as explained above).
+\begin{table}[H]
+ \small
+ \begin{tabular}{|p{65mm}|p{\textwidth-65mm-24pt}|} \hline
+ \textbf{Macrostability} Location & \textbf{\ProgramName} Location \\ \hline
+ DikeSoilScenario & TO-BE-ADDED \\ \hline
+ WaterLevelRiver & Scenario -> RiverLevel \\ \hline
+ WaterLevelRiverAverage & TO-BE-ADDED \\ \hline
+ WaterLevelRiverLow & Scenario -> RiverLevelLow \\ \hline
+ WaterLevelPolder & PolderLevel \\ \hline
+ DrainageConstructionPresent & TO-BE-ADDED \\ \hline
+ XCoordMiddleDrainageConstruction & TO-BE-ADDED \\ \hline
+ ZCoordMiddleDrainageConstruction & TO-BE-ADDED \\ \hline
+ MinimumLevelPhreaticLineAtDikeTopRiver & TO-BE-ADDED \\ \hline
+ MinimumLevelPhreaticLineAtDikeTopRiver & TO-BE-ADDED \\ \hline
+ UseDefaultOffsets & TO-BE-ADDED \\ \hline
+ PlLineOffsetBelowPointBRingtoetsWti2017 & TO-BE-ADDED \\ \hline
+ PlLineOffsetBelowDikeTopAtPolder & Scenario -> PlLineOffsetBelowDikeTopAtPolder \\ \hline
+ PlLineOffsetBelowShoulderBaseInside & Scenario -> PlLineOffsetBelowShoulderBaseInside \\ \hline
+ PlLineOffsetBelowDikeToeAtPolder & Scenario -> PlLineOffsetBelowShoulderBaseInside \\ \hline
+ HeadInPLLine2Inwards & HeadPl2 \\ \hline
+ HeadInPLLine3 & Scenario -> HeadPl3 \\ \hline
+ HeadInPLLine4 & Scenario -> HeadPl4 \\ \hline
+ AdjustPl3And4ForUplift & set to TRUE \\ \hline
+ PenetrationLength & ModelParametersForPlLines -> PenetrationLength \\ \hline
+ LeakageLengthOutwardsPl3 & DO-NOT-IMPLEMENT \\ \hline
+ LeakageLengthInwardsPl3 & generate based on ModelParametersForPlLines -> DampingFactorPl3 \\ \hline
+ LeakageLengthOutwardsPl4 & DO-NOT-IMPLEMENT \\ \hline
+ LeakageLengthInwardsPl4 & generate based on ModelParametersForPlLines -> DampingFactorPl4 \\ \hline
+ \end{tabular}
+ \caption{\small Mapping of the \MacrostabilityKernel Slip Plane Location to the \ProgramName Location.}
+ \label{table-MappingDamEngineLocationMacrostability}
+\end{table}
+The parameters defined in the following table for Constraints will not yet be implemented (as explained above).
+\begin{table}[H]
+ \small
+ \begin{tabular}{|p{70mm}|p{\textwidth-70mm-24pt}|} \hline
+ \textbf{Macrostability} Constraints & \textbf{\ProgramName} Constraints \\ \hline
+ SlipPlaneMinDepth & Location -> StabiltiyOptions -> MinimumCircleDepth \\ \hline
+ SlipPlaneMinLength & TO-BE-ADDED \\ \hline
+ CreateZones & TO-BE-ADDED \\ \hline
+ AutomaticForbiddenZones & TO-BE-ADDED \\ \hline
+ XEntryMin & TO-BE-ADDED \\ \hline
+ XEntryMax & TO-BE-ADDED \\ \hline
+ MaxAllowedAngleBetweenSlices & TO-BE-ADDED \\ \hline
+ RequiredForcePointsInSlices & TO-BE-ADDED \\ \hline
+ \end{tabular}
+ \caption{\small Mapping of the \MacrostabilityKernel Slip Plane Constraints to the \ProgramName data.}
+ \label{table-MappingDamEngineSlipPlaneConstraintsMacrostability}
+\end{table}
+
+\subsubsection{Mapping of pl lines to waternet}
+\label{sec:MappingPlLinesToWaternet}
+
+Dam Engine has a set of pl lines: Pl 1, Pl 2, Pl 3, Pl 4. Pl 1 is the phreatic line and it always exists. The other pl lines are optional. The pl lines from the Dam Engine are converted to a waternet that can be used in Macrostability.
+
+The waternet consists of a phreatic line, a list of head lines and a list of waternet lines. Each waternet line can have an associated head line.
+To create the waternet lines the soil profile data is used to determine the 'bottom aquifer' (the lowest set of one or more connected aquifer layers) and the 'in-between aquifer' (the first aquifer (layer set) that lies above the bottom aquifer).
+
+Pl 1 becomes the phreatic line. \\
+If Pl 2 exists it becomes a head line. If there is at least one aquifer, a waternet line is created along the top of the bottom aquifer + penetration length. \\
+If Pl 3 exists it becomes a head line. If there are at least two aquifers, a waternet line is created along the top of the in-between aquifer. \\
+If Pl 4 exists it becomes a head line. If there is at least one aquifer, a waternet line is created along the top of the bottom aquifer. \\
+
+\subsection{Mapping of the validation result}
+\label{sec:MappingValidationResultMacrostability}
+The \MacrostabilityKernel returns the validation result when the Validate function is called. In the following table a mapping of the validation result to the \ProgramName data is defined.
+\begin{table}[H]
+ \small
+ \begin{tabular}{|p{60mm}|p{\textwidth-60mm-24pt}|} \hline
+ \textbf{Macrostability} WTIStabilityModelValidation.xsd & \textbf{\ProgramName} DamDesignResult.xsd -> StabilityDesignResults \\ \hline
+ Validations -> ValidationsType & ResultMessage -> LogMessageType\\ \hline
+\end{tabular}
+ \caption{\small Mapping of the \MacrostabilityKernel validation result to the \ProgramName.}
+ \label{table-MappingValidationResultMacrostability}
+\end{table}
+When the Validations part is empty it means that the input is Valid. When there are one or more validations, they are added to the messages of the design results. The type of message can be Info, Warning or Error. The validation fails when there is at least one Error message.
+
+\subsection{Mapping of the calculation result}
+\label{sec:MappingCalculationResultMacrostability}
+The \MacrostabilityKernel returns the calculation result when the Run function is called. In the following table a mapping of the calculation result to the \ProgramName data is defined. For now, only the parts that we currently use are described.
+\begin{table}[H]
+ \small
+ \begin{tabular}{|p{60mm}|p{\textwidth-60mm-24pt}|} \hline
+ \textbf{Macrostability} WTIStabilityModelResult.xsd -> WTIStabilityModelResult & \textbf{\ProgramName} DamDesignResult.xsd -> StabilityDesignResults \\ \hline
+ Calculated & CalculationResult\\ \hline
+ SafetyFactor & SafetyFactor\\ \hline
+ Messages & ResultMessage\\ \hline
+ MinimumSafetyCurve -> first Slice, TopLeftPoint X & CircleSurfacePointLeftXCoordinate\\ \hline
+ MinimumSafetyCurve -> last Slice, TopRightPoint X & CircleSurfacePointRightXCoordinate\\ \hline
+ ModelOption & StabilityModelType\\ \hline
+\end{tabular}
+ \caption{\small Mapping of the \MacrostabilityKernel validation result to the \ProgramName.}
+ \label{table-MappingCalculationResultMacrostability}
+\end{table}
+Calculated is a boolean. When Calculated is true the CalculationResult is Succeeded, otherwise RunFailed.
+The type of message can be Info, Warning or Error.
+Presumed is that when Calculated is true, there are no error messages.
+
+
+%------------------------------------------------------------------------------
+\chapter{Literature} \label{chapterLiterature}
+
+\bibliography{../DAM_references/dam_references}
+
+\appendix
+%----------------------------------------
+\chapter{DamInput}
+\label{app:DamInput}
+These are the XSD's that apply to the input XML of the \ProgramName.
+
+\section{DamInput.xsd}
+\label{sec:DamInputXsd}
+This is the DamInput XSD.
+\lstinputlisting{xsd/DamInput.xsd}
+
+\section{DamLocation.xsd}
+\label{sec:DamLocationXsd}
+This is the Location XSD.
+\lstinputlisting{xsd/DamLocation.xsd}
+
+\section{DamSurfaceLine.xsd}
+\label{sec:DamSurfaceLine}
+This is the DamSurfaceLine XSD.
+\lstinputlisting{xsd/DamSurfaceLine.xsd}
+
+\section{DamSoil.xsd}
+\label{sec:DamSoil}
+This is the DamSoil XSD.
+\lstinputlisting{xsd/DamSoil.xsd}
+
+\section{DamSegment.xsd}
+\label{sec:DamSegment}
+This is the DamSegment XSD.
+\lstinputlisting{xsd/DamSegment.xsd}
+
+\section{DamSoilProfile1D.xsd}
+\label{sec:DamSoilProfile1D}
+This is the Dam SoilProfile XSD.
+\lstinputlisting{xsd/DamSoilProfile1D.xsd}
+
+\section{DamSoilProfile2D.xsd}
+\label{sec:DamSoilProfile2D}
+This is the DamSoilProfile2D XSD.
+\lstinputlisting{xsd/DamSoilProfile2D.xsd}
+
+\section{DamStabilityParameters.xsd}
+\label{sec:DamStabilityParameters}
+This is the DamStabilityParameters XSD.
+\lstinputlisting{xsd/DamStabilityParameters.xsd}
+
+%----------------------------------------
+\chapter{Messages}
+\label{app:Messages}
+These are the XSD's that apply to the messages XML of the \ProgramName.
+
+\lstinputlisting{xsd/Message.xsd}
+
+%----------------------------------------
+\chapter{DamOutput} \label{app:DamOutput}
+These are the XSD's that apply to the output XML of the \ProgramName.
+
+\section{DamOutput.xsd}
+\label{sec:DamOutput}
+This is the DamOutput XSD.
+\lstinputlisting{xsd/DamOutput.xsd}
+
+\section{Message.xsd}
+\label{sec:Message}
+This is the Message XSD.
+\lstinputlisting{xsd/Message.xsd}
+
+\section{DamCalculationResults.xsd}
+\label{sec:DamCalculationResults}
+This is the DamCalculationResults XSD.
+\lstinputlisting{xsd/DamCalculationResults.xsd}
+
+\pagestyle{empty}
+\mbox{}
+
+%------------------------------------------------------------------------------
+\end{document}
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/pictures/DAMEngineActivityOperational.pdf
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/pictures/DAMEngineActivityAssessment.pdf
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/pictures/DAMEngineActivityAssessment.pdf (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Technical Design/pictures/DAMEngineActivityAssessment.pdf (revision 3911)
@@ -0,0 +1,63 @@
+%PDF-1.4
+%����
+6 0 obj
+<>stream
+x��YMo7���=t�$�_Ǵh�!���Iv��$Ē���w���r
+�R�B�
+�7;��y;CR���;땋���ݏ�ݻ�s7(o��������c��{�m:��tF���>u������A-��W8�����vPz�v�y���u����+��v88Y����SI�u|��wQi��"��j�� ���`�J��Rn������ɨ�#%|Of2Xtl<4~3Ke��o3��t�WiP��}�\Ql�f���7��
+N���1���V]#?�a�&��E����Rm���z�����6�-~6�M8�|�je0��~��W��q�kM��/��Ӻ[�M��zF#���P���2��Wκ�lzC\�Bp=.�u�G��VR\�4����"�Y`KԌE�cn�>�+�"@�a]��������d�Xj�Fy�,�;�l{�I�>��41nQT��ҭHh��M�n��!��n!�2+~9͑����1y���W��4��@�rI�
+8)3
+JG�6O��5�6S��TM�s5���I�|\�1�|ͣ����l�m�f�&me�M�f�+��q�䒄\����wTN&�'o>n�j��c�"y�O[��c�vq����\�"i�7��N�FF�M�N�~u�tL�$��u �5.9F�t��+A�U�A��B�![�fY�L��'�Y�e�q�.�>Ӽ��y���ُ�ɛ�ј��M�o�n�r=N�SD�:_>K�䍨�:Wt�<�ο1p�R�c=�D)�dB�h�`�H>�0�S
+m>� ���SB5��@�tc(��Gn��OI>�a�OY�)7��-,/ǵ�K���s~��f\<�7�� �z3�:���q�A���߬�KU d�q�x��F��2�@K�'Z���h�!��J(�C��2��Ђ�Ђ�Je�
+-��Aƿ�Nf��Q
+�4Ӑ�~��W���vA�Z#����6V�Vd�Q�Z=mlBg��5���6���%�q
+m���(c�mh���2�вTCˢL� -[>�ڗ��?bm���d�2�n�]���^���n7�A=13bOO?߉ͯ�-�˷rh���徎��1�$H�3~|���C�r�8���V��z��X�S��m1!�C�3фX۞��n���W�\!�����{㫒�t Q�g��&9غշ��?��=L�|6՝y^�f�~�Y��oh�|�Y�Txʦv�����Tr6[%Giu�}�,/H�2� e���$�Z�h�F�a��"LQ��0�
+���+?΄� �\a�{��.�T�a\ �J��#�uՠ(�=�'��#�0F�}eBE�<͉�r�3N�9'b�D�H!OR�8���V?'���O�ǡ�����|� ����O7�q�q2���'=���غ�ckg[#��#56����&g���O��>�\9!�.��� Ю̳&Ԭ �)c�5�
+endstream
+endobj
+8 0 obj
+<>/Font<>>>/Parent 7 0 R/MediaBox[0 0 410 620]>>
+endobj
+3 0 obj
+<>
+endobj
+1 0 obj
+<>
+endobj
+2 0 obj
+<>
+endobj
+5 0 obj
+<>
+endobj
+4 0 obj
+<>
+endobj
+7 0 obj
+<>
+endobj
+9 0 obj
+<>
+endobj
+10 0 obj
+<>
+endobj
+xref
+0 11
+0000000000 65535 f
+0000001833 00000 n
+0000001863 00000 n
+0000001745 00000 n
+0000001913 00000 n
+0000001888 00000 n
+0000000015 00000 n
+0000001938 00000 n
+0000001534 00000 n
+0000001989 00000 n
+0000002034 00000 n
+trailer
+<]/Root 9 0 R/Size 11>>
+%iText-5.4.1
+startxref
+2188
+%%EOF
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/OuterShoulderAdeptedGeometry.png
===================================================================
diff -u
Binary files differ
Index: DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineActivityAssessmentRegional.pdf
===================================================================
diff -u
--- DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineActivityAssessmentRegional.pdf (revision 0)
+++ DamEngine/tags/23.1.1/doc/Dam Engine - Functional Design/pictures/DAMEngineActivityAssessmentRegional.pdf (revision 3911)
@@ -0,0 +1,71 @@
+%PDF-1.4
+%����
+6 0 obj
+<>stream
+x��ZK�$�
+�ׯ�19���:Ɓm����C�à�ww��nx�N��#��JZw�{��tv0��E�(}�$V�:}u;��bu{?}};�0�:i��V��W�e�~�����n�i�MF�6Y�])��d��~���Zݗ���˪�P7Fk�Y�h!�2"Ԯ��\��oo�z�\��v��b��+p���(�v\�`���2��)�(c,=7j3���J�����`u�j���D�zY�ƩZ
+
+�ƨ�L���c��k1$7ЏS�|C�Տ߾:�np�,����+~��7e��O��5-��Zz�I�"�n7�_�~�l�/w��_o�Gū���I��T{�Z�Lm