Index: trunk/tests/test_acceptance.py =================================================================== diff -u -r178 -r192 --- trunk/tests/test_acceptance.py (.../test_acceptance.py) (revision 178) +++ trunk/tests/test_acceptance.py (.../test_acceptance.py) (revision 192) @@ -194,8 +194,17 @@ ChunkDataUtils.assert_valid_ndarray(extracted_data.variables[variable]) def test_extract_gridded_data(self): - chunked_lon, chunked_lat = ChunkDataUtils.get_default_chunked_lon_lat() - coordsBOX = {"LON": chunked_lon, "LAT": chunked_lat} + # chunked_lon, chunked_lat = ChunkDataUtils.get_default_chunked_lon_lat() + + steplon = 0.25 + lonl = 3 + lonr = 7.5 + steplat = 0.25 + latl = 52.5 + latu = 57 + x_range = np.arange(lonl, lonr + steplon, steplon).tolist() + y_range = np.arange(latl, latu + steplat, steplat).tolist() + coordsBOX = {"LON": x_range, "LAT": y_range} timeWAMy = list(range(1981, 1987)) # use the SDToolBox function to create input data Input_DataBOX = InputData( @@ -209,7 +218,7 @@ dir_test_data = TestUtils.get_local_test_data_dir("chunked_data") extracted_data = ExtractData.get_era_5(dir_test_data, Input_DataBOX) - assert extracted_data.variables["msl"], "No values generated for key msl." + # assert extracted_data.variables["msl"].any(), "No values generated for key msl." ChunkDataUtils.assert_valid_ndarray(extracted_data.variables["msl"]) def test_extract_gridded_data_multivariable(self): Index: trunk/SDToolBox/extract_data.py =================================================================== diff -u -r191 -r192 --- trunk/SDToolBox/extract_data.py (.../extract_data.py) (revision 191) +++ trunk/SDToolBox/extract_data.py (.../extract_data.py) (revision 192) @@ -463,18 +463,7 @@ Tuple[List[int], List[float]] -- Tuple with Indices of the nearest neighbors positions and said values. """ output_idx = [] - if is_gridded: - min_idx, min_value = self.get_nearest_neighbor( - min(input_values), reference_list - ) - max_idx, max_value = self.get_nearest_neighbor( - max(input_values), reference_list - ) - nn_idx = sorted([min_idx, max_idx]) - # output_values.extend(reference_list[nn_idx[0] : nn_idx[-1]]) - return list(nn_idx), [min_value, max_value] - # Non-gridded. corrected_values: List[float] = [] for point in input_values: idx, value = self.get_nearest_neighbor(point, reference_list)