Index: wflow-py/Scripts/e2o-getfromwci.py =================================================================== diff -u -r12ea40dc08628f654753679e0972e87b7bb12f7a -ra86cb51cd1731ce83f57e4b0b932a2a115b39712 --- wflow-py/Scripts/e2o-getfromwci.py (.../e2o-getfromwci.py) (revision 12ea40dc08628f654753679e0972e87b7bb12f7a) +++ wflow-py/Scripts/e2o-getfromwci.py (.../e2o-getfromwci.py) (revision a86cb51cd1731ce83f57e4b0b932a2a115b39712) @@ -1,6 +1,7 @@ #!/usr/bin/env python # we need the netcdf4 library. This allows us to read netcdf from OpeNDAP or files import netCDF4 +import cftime import osgeo.gdal as gdal from osgeo.gdalconst import * @@ -103,7 +104,7 @@ lon = lon[lonidx] # Now get the time for the x-axis time = ncdataset.variables["time"] - timeObj = netCDF4.num2date(time[:], units=time.units, calendar=time.calendar) + timeObj = cftime.num2date(time[:], units=time.units, calendar=time.calendar) # Now determine area P for each timestep and display in a graph # first the mean per area lat, next average those also