Index: wflow-py/Scripts/e2o-getfromwci.py =================================================================== diff -u -r3e39e84af48f1bcb5ec0d243748147be223674f2 -rb7003f98f20ca40439ced290e61620df123c327c --- wflow-py/Scripts/e2o-getfromwci.py (.../e2o-getfromwci.py) (revision 3e39e84af48f1bcb5ec0d243748147be223674f2) +++ wflow-py/Scripts/e2o-getfromwci.py (.../e2o-getfromwci.py) (revision b7003f98f20ca40439ced290e61620df123c327c) @@ -1,6 +1,7 @@ #!/usr/bin/env python # we need the netcdf4 library. This allows us to read netcdf from OpeNDAP or files import netCDF4 +import cftime import osgeo.gdal as gdal from osgeo.gdalconst import * @@ -105,7 +106,7 @@ lon = lon[lonidx] # Now get the time for the x-axis time = ncdataset.variables["time"] - timeObj = netCDF4.num2date(time[:], units=time.units, calendar=time.calendar) + timeObj = cftime.num2date(time[:], units=time.units, calendar=time.calendar) # Now determine area P for each timestep and display in a graph # first the mean per area lat, next average those also